The latest versions of RELAP5-3D© code allow the simulation of thermodynamic system, using different type of working fluids, that is, liquid metals, molten salt, diathermic oil, and so forth, thanks to the ATHENA code integration. The RELAP5-3D© water thermophysical properties are largely verified and validated; however there are not so many experiments to generate the liquid metals ones in particular for the Lead and the Lead Bismuth Eutectic. Recently, new and more accurate experimental data are available for liquid metals. The comparison between these state-of-the-art data and the RELAP5-3D© default thermophysical properties shows some discrepancy; therefore a tool for the generation of new properties binary files has been developed. All the available data came from experiments performed at atmospheric pressure. Therefore, to extend the pressure domain below and above this pressure, the tool fits a semiempirical model (soft sphere model with inverse-power-law potential), specific for the liquid metals. New binary files of thermophysical properties, with a detailed mesh grid of point to reduce the code mass error (especially for the Lead), were generated with this tool. Finally, calculations using a simple natural circulation loop were performed to understand the differences between the default and the new properties.
New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for Safety Analysis of Gen IV Reactors / Balestra, Paolo; Giannetti, Fabio; Caruso, Gianfranco; Alfonsi, Andrea. - In: SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS. - ISSN 1687-6075. - ELETTRONICO. - 2016:(2016), pp. 1-15. [10.1155/2016/1687946]
New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for Safety Analysis of Gen IV Reactors
BALESTRA, PAOLO;GIANNETTI, FABIO;CARUSO, Gianfranco;ALFONSI, ANDREA
2016
Abstract
The latest versions of RELAP5-3D© code allow the simulation of thermodynamic system, using different type of working fluids, that is, liquid metals, molten salt, diathermic oil, and so forth, thanks to the ATHENA code integration. The RELAP5-3D© water thermophysical properties are largely verified and validated; however there are not so many experiments to generate the liquid metals ones in particular for the Lead and the Lead Bismuth Eutectic. Recently, new and more accurate experimental data are available for liquid metals. The comparison between these state-of-the-art data and the RELAP5-3D© default thermophysical properties shows some discrepancy; therefore a tool for the generation of new properties binary files has been developed. All the available data came from experiments performed at atmospheric pressure. Therefore, to extend the pressure domain below and above this pressure, the tool fits a semiempirical model (soft sphere model with inverse-power-law potential), specific for the liquid metals. New binary files of thermophysical properties, with a detailed mesh grid of point to reduce the code mass error (especially for the Lead), were generated with this tool. Finally, calculations using a simple natural circulation loop were performed to understand the differences between the default and the new properties.File | Dimensione | Formato | |
---|---|---|---|
Balestra_New-RELAP5-3D_2016.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.