We study the kinetic Kuramoto model for coupled oscillators with coupling constant below the synchronization threshold. We manage to prove that, for any analytic initial datum, if the interaction is small enough, the order parameter of the model vanishes exponentially fast, and the solution is asymptotically described by a free flow. This behavior is similar to the phenomenon of Landau damping in plasma physics. In the proof we use a combination of techniques from Landau damping and from abstract Cauchy-Kowalewskaya theorem.
Exponential dephasing of oscillators in the Kinetic Kuramoto Model / Benedetto, Dario; Caglioti, Emanuele; Montemagno, Umberto. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 162 (4):(2016), pp. 813-823. [10.1007/s10955-015-1426-3]
Exponential dephasing of oscillators in the Kinetic Kuramoto Model
BENEDETTO, Dario;CAGLIOTI, Emanuele;MONTEMAGNO, UMBERTO
2016
Abstract
We study the kinetic Kuramoto model for coupled oscillators with coupling constant below the synchronization threshold. We manage to prove that, for any analytic initial datum, if the interaction is small enough, the order parameter of the model vanishes exponentially fast, and the solution is asymptotically described by a free flow. This behavior is similar to the phenomenon of Landau damping in plasma physics. In the proof we use a combination of techniques from Landau damping and from abstract Cauchy-Kowalewskaya theorem.File | Dimensione | Formato | |
---|---|---|---|
Benedetto_postprint_Exponential-dephasing_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
436.68 kB
Formato
Adobe PDF
|
436.68 kB | Adobe PDF | |
Benedetto_Exponential-dephasing_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
419.03 kB
Formato
Adobe PDF
|
419.03 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.