We consider the stability problem for a unitary N +1 fermionic model, i.e., a system of N identical fermions interacting via zero-range interactions with a different particle, in the case of infinite two-body scattering length. Starting from the two-body boundary condition, we construct an explicit expression for the expectation value of the energy. Then we investigate its boundedness from below and exhibit a sufficient condition on the mass ratio, which guarantees the stability of the model.

Energy lower bound for the unitary N + 1 fermionic model / Correggi, Michele; Finco, Domenico; Teta, Alessandro. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - STAMPA. - 111:(2015). [10.1209/0295-5075/111/10003]

Energy lower bound for the unitary N + 1 fermionic model

CORREGGI, MICHELE;TETA, Alessandro
2015

Abstract

We consider the stability problem for a unitary N +1 fermionic model, i.e., a system of N identical fermions interacting via zero-range interactions with a different particle, in the case of infinite two-body scattering length. Starting from the two-body boundary condition, we construct an explicit expression for the expectation value of the energy. Then we investigate its boundedness from below and exhibit a sufficient condition on the mass ratio, which guarantees the stability of the model.
2015
Fermionic systems; ultracold gases
01 Pubblicazione su rivista::01a Articolo in rivista
Energy lower bound for the unitary N + 1 fermionic model / Correggi, Michele; Finco, Domenico; Teta, Alessandro. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - STAMPA. - 111:(2015). [10.1209/0295-5075/111/10003]
File allegati a questo prodotto
File Dimensione Formato  
Correggi_Energy-lower-bound_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 289.35 kB
Formato Adobe PDF
289.35 kB Adobe PDF   Contatta l'autore
Correggi_postprint_Energy-lower-bound_2015.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 301.87 kB
Formato Adobe PDF
301.87 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/844792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact