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L.go San Leonardo Murialdo 1, 00146 Roma, Italy
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We consider the stability problem for a unitary N+1 fermionic model, i.e., a system of N identical
fermions interacting via zero-range interactions with a different particle, in the case of infinite two-
body scattering length. Starting from the two-body boundary condition, we construct an explicit
expression for the expectation value of the energy. Then we investigate its boudnedness from below
and exhibit a sufficient condition on the mass ratio, which guarantees the stability of the model.
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I. INTRODUCTION AND MAIN RESULT

The study of the quantum mechanical many-body
problem with pairwise zero-range interactions has re-
ceived a considerable attention in recent years as an ef-
fective model describing the behavior of cold atoms near
the BEC/BCS crossover
([2, 5] and references therein). The correct definition of
the model, the occurrence of the Efimov effect and the
analysis of the stability problem, i.e., the existence of
a lower bound for the Hamiltonian, have been widely
studied both in the physical [3, 4, 12, 13, 15–17] and
in the mathematical (see, e.g., [6, 7, 10, 14]) literature.
The typical approach to the problem is however quite
different and it is not even clear a priori that the two
strategies should lead to equivalent results. The inves-
tigation of all the relevant properties of the model (en-
ergy levels, bound states, scattering properties etc.) is
indeed performed in the physics literature by imposing
a suitable singular boundary condition on the admissi-
ble wave functions. The mathematical strategy to give a
rigorous meaning to zero-range Schrödinger operator is
on the other hand more involved and relies heavily on
the theory of self-adjoint extensions: one introduces first
a class of symmetric operators with domain containing
functions which vanishes on the support of the interac-
tion and then classifies all the possible self-adjoint ex-
tensions of such operators. It is well known that in the
two-body case the two approaches are completely equiv-
alent, since the whole class of Hamiltonians for a pair
of particles with zero-range interaction can be explictly
constructed and it can be shown that the so obtained self-
adjointness domains consist of wave functions satisfying
the same boundary condition considered in the physics
approach. In fact in this simple case all the spectral
and scattering properties can be completely character-
ized [1]. On the opposite, when the number of particles
exceeds two, the problem becomes much less trivial, since
the class of self-adjoint extensions can be extremely wide
and contains many operators without apparent physical
meaning. It is then customary in mathematical physics to

focus the attention onto a much smaller class of Hamilto-
nians, which typically go under the name of Skornyakov
Ter-Martirosyan (STM) operators. The heuristics be-
hind this apparently arbitrary choice is just an analogy
with the two-body case, which has however not a sound
physics motivation. One of the goals of this note is pre-
cisely to show that starting from the physics boundary
condition one can recover the expectation value of the
STM operators, so establishing an equivalence between
the two approaches. In fact the explicit expression of the
energy obtained here (see (27)) is also simpler and eas-
ier to handle than the one studied, e.g., in [6], although
perfectly equivalent from the mathematical point of view.

Once the physics motivations of the model have been
discussed, we then turn our attention to a more specific
question, i.e., the stability of the model under investiga-
tion. Indeed it is known that STM operators are symmet-
ric but (in general) are neither self-adjoint nor bounded
from below. This happens, for instance, in the case of
three identical bosons, where it was shown in [9] that
the STM operator admits self-adjoint extensions which
can be explicitly constructed but they are all unbounded
from below and therefore the system is unstable.

Here we are interested in the stability problem in the
fermionic case, that is when fermions of different species
interact among themselves. For the most general system
composed by a mixture of N identical fermions of one
type (with mass m1) and K identical fermions of a dif-
ferent type (with mass m0), the stability problem for the
corresponding STM operator is open and some results
are available only in special cases. For instance, a sys-
tem composed by two identical fermions plus a different
particle is known to be stable if (and only if) the mass
ratio

α =
m1

m0
(1)

is smaller than the critical value 13.607 (see, e.g., [2, 6].
Further results are available in the 3 + 1 case only [3].

In this note, following the ideas of [6], we present an
alternative and cleaner proof of a sufficient condition for
the stability of a system composed by N , with N ≥ 2,
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identical fermions plus a different particle. As a matter
of fact our result, showing positiviy of the energy expec-
tation value, also rules out the occurrence of the Efimov
spectrum. The stability condition can be cast in the fol-
lowing form

α ≤ αc(N) (2)

where αc(N) is the solution of the following equation

Λ(α,N) = 2
π (N−1)

(
1+α
α

)2[ α√
1+2α

− arcsin
(
α

1+α

)]
= 1

(3)
Notice that for each N the function Λ(α,N) is increasing,
goes to infinity for α → ∞ and Λ(0, N) = 0. So there
is exactly one solution αc(N) > 0 of (3) and moreover
Λ(α,N) < 1 for α < αc(N). We remark that only for
N = 2 the condition (2) is optimal, i.e., αc(2) = 13.607,
and therefore the result provides a rigorous proof of what
is already known in the physical literature.

For N > 2 the condition is surely not optimal since, as
it will be clear from the proof, the role of the antisym-
metry is only partially exploited. Nevertheless we believe
that the result can be of some interest since (2) gives a
first sufficient stability condition which, apparently, was
not known before. Some numerical values of αc(N) are
listed here: αc(3) = 5.291, αc(8) = 1.056, αc(9) = 0.823,
etc.. In particular this means that, in the case of equal
masses, the system is stable if N ≤ 8.

In the exposition of the proof we also aim at pointing
out the major steps where an alternative but not math-
ematical rigorous approach, e.g., a numerical simulation,
could lead to an improvement of the result. This can
be easily done within this new derivation of the stability
condition and it is another motivation for presenting it
in a separate note.

Let us consider the formal Hamiltonian for a system
of N identical fermions with mass m1 and a different
particle with mass m0 (we set ~ = 1)

H̃ = − 1
2m1

∑N
i=1 ∆xi− 1

2m0
∆x0 +γ

∑N
i=1 δ(x0−xi) . (4)

The parameter γ ∈ R is a coupling constant which must
be properly renormalized in order to give a precise mean-
ing to the expression (4).

The formal Hamiltonian (4) can be given a precise
meaning as a, possibly self-adjoint, operator inthe Hilbert
space of square integrable functions on R3N+3 antisym-
metric under exchange of fermions. More precisely, it
is by definition a non trivial (self-adjoint) extension of
the free Hamiltonian H0 restricted to smooth functions
vanishing on the set

Ω =
⋃

i∈{1,...,N}

{
X ∈ R3(N+1)

∣∣∣xi = x0

}
(5)

with X = (x0, . . . ,xN ). As we already mentioned, we
want to select the STM operator starting from the phys-
ical boundary condition on Ω. We proceed by analogy
with the well known two-body case.

For two (different) particles, extracting the center of
mass motion and denoting by x the relative coordi-
nate, the domain of the operator consists of functions
ψ ∈ L2(R3), which are regular for x 6= 0 and satisfy the
following boundary condition as |x| → 0

ψ(x) =

(
1

|x|
− 1

a

)
q + o(1), (6)

where q ∈ C depends on ψ and a ∈ R has the physical
meaning of a scattering length. Moreover, the Hamilto-
nian acts as the free Hamiltonian for |x| 6= 0.

The STM extension Ha in our fermionic N+1-particle
system is defined in an analogous way. Extracting the
center of mass motion, the domain D(Ha) is made of
functions ψ defined on the set

M = {X ∈ R3(N+1) |xcm = 0} (7)

antisymmetric under the exchange of any pair of
fermions, regular for x0 6= xi, i = 1, . . . , N . The stan-
dard formulation of the boundary condition satisfied as
|x0 − xi| → 0 is (see, e.g., [17])

ψ(X) =

(
1

|x0−xi|
− 1

a

)
(−1)i+1Q(r0i, x̆i) + o(1) (8)

where Q : R3N → C is a function antisymmetric in x̆i
and a ∈ R is the two-body scattering length correspond-
ing to the interaction of a fermion with the different par-
ticle. In the above expressione we have denoted

r0i =
m0x0 +m1xi
m0 +m1

, (9)

x̆i = (x1, . . . ,xi−1,xi+1, . . . ,xN ). (10)

Notice that in the limiting procedure defining the bound-
ary condition (8) the vectors r0i and x̆i are kept fixed.

Furthermore, Ha acts as the free Hamiltonian outside
the set Ω, i.e.,

(Haψ)(X) = (H0ψ)(X), if X ∈M \ Ω. (11)

A special role is played by the parameter-free case of
infinite scattering length, known as the unitary case. We
shall denote by H the corresponding STM extension, i.e.,
H := H∞.

The main result discussed in this note is the following

Theorem. In the unitary case the energy form, i.e., the
expectation value of the energy, is positive for α ≤ αc(N).
More precisely, for any ψ ∈ D(H),

(ψ,Hψ) ≥ 0, if α ≤ αc(N). (12)

This in particular implies stability for the unitary N + 1
fermionic model.

In the next Section we derive a suitable expression for
the energy form. In Section III we start from such expres-
sion to explain the steps required to prove our result. In
Section IV we briefly summarize the content of the paper.
In the Appendix we collect some technical results useful
to reformulate the domain and the boundary condition
characterizing the Hamiltonian.
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II. DERIVATION OF THE ENERGY FORM

For the sake of simplicity of notation from now on we
drop the restriction to M or, equivalenty, the condition
on momenta pcm =

∑
pi = 0; we will however take it

into account at the end of the computation. The key
point is to represent the domain D(H) as the set of wave
functions decomposing as

ψ = w +GQ (13)

where w is a smooth function and GQ contains the sin-
gular behavior prescribed in (8). More precisely, GQ is
the “potential” produced by the “charge” Q distributed
on the planes {xi = x0}, i.e.,

(GQ)(X) =
1

µ
√

2π

N∑
j=1

(−1)j+1

(2π)
3
2 (N+1)

×

×
∫

dP eiP·X
Q̂(p0 + pj , p̆j)

h0(P)
(14)

with

µ =
m0m1

m0 +m1
, h0(P) =

p2
0

2m0
+

N∑
i=1

p2
i

2m1
. (15)

It is straightforward to verify that as yi = x0 − xi → 0
with r0i fixed

(GQ)(X) ' (−1)i+1

|yi|
Q(r0i, x̆i)− (ΓiQ) (r0i, x̆i), (16)

where, setting p̆i = (p1, . . . ,pi−1,pi+1, . . . ,pN ),

(ΓiQ) (r0i, x̆i) =
(−1)i+1

(2π)
3
2N

∫
dp̆idqi e

ip̆i·x̆i+iqi·r0i×

×
√

α
(1+α)2q

2
i + 1

1+α p̆
2
i Q̂(qi, p̆i)+∑

j 6=i

(−1)j+1

µ(2π)
3
2N+2

∫
dPei(p0+pi)·r0i+ip̆i·x̆i Q̂(p0 + pj , p̆j)

h0(P)
.

(17)

Moreover, it is useful to note that the potential GQ satisfy
the equation(
H0 GQ

)
(X) = 4π

∑
i

(−1)i+1Q(r0i, x̆i) δ(xi − x0) (18)

in distributional sense and then, in particular,(
H0 GQ

)
(X) = 0, if X ∈ R3N+3 \ Ω. (19)

The proof of (16) and (18) is postponed to the Appendix.
Using the decomposition (13) and the asymptotic be-

havior (16), the boundary condition (8) in the unitary
case can be equivalently written as

lim
|yi|→0

w(yi, r0i, x̆i) = (ΓiQ)(r0i, x̆i). (20)

We can now derive the expression for the en-
ergy form. Taking into account (11), the decom-
position (13) and equation (19) and setting Dε ={
X ∈ R3(N+1) | |xi − x0| > ε, i = 1, . . . , N

}
, we have

(ψ,Hψ) = lim
ε→0

∫
Dε
dX ψ̄(X)

(
H0ψ)(X)

= lim
ε→0

∫
Dε
dX

(
w̄ + GQ

)
(X)

(
H0w)(X)

= (w,H0w) + lim
ε→0

∫
Dε
dX

(
GQ
)
(X)

(
H0w)(X). (21)

In the last integral of (21) we apply Green’s identities.
Denoting S2

i = {yi ∈ R3 | |yi| = 1}, as ε→ 0 and chang-
ing variables from (x0,xi) to (r0i,yi) we obtain

lim
ε→0

∫
Dε
dX

(
GQ
)
(X)

(
H0w)(X)

= − lim
ε→0

ε2
N∑
i=1

∫
R3N

dr0idx̆i

∫
S2
i

dσ(ωi)
∂
(
GQ
)

∂|yi|

∣∣∣∣
|yi|=ε

w
∣∣
|yi|=ε

=

N∑
i=1

(−1)i+1

∫
R3N

dr0idx̆iQ(r0i, x̆i)

∫
S2
i

dσ(ωi) lim
ε→0

w
∣∣
|yi|=ε

= 4π

N∑
i=1

(−1)i+1

∫
R3N

dr0idx̆iQ(r0i, x̆i)(ΓiQ)(r0i, x̆i),

(22)

where we have used equation (19), the asymptotics (16)
and the boundary condition (20). Taking into account
(21) and (22), we find

(ψ,Hψ) = (w,H0w)

+ 4π

N∑
i=1

(−1)i+1

∫
R3N

dr0idx̆iQ(r0i, x̆i)(ΓiQ)(r0i, x̆i).

(23)

Inserting in (23) the explicit expression (17) of ΓiQ
and exploiting the antisymmetry property of the charge
Q, the second term on the r.h.s. of (23) equals

4πN

∫
dq dp̆1

√
α

(1+α)2q
2 + 1

1+α p̆
2
1

∣∣Q̂(q, p̆1)
∣∣2+

+
N(N − 1)

µπ

∫
dP

Q̂(p0 + p1, p̆1)Q̂(p0 + p2, p̆2)

h0(P)
.

(24)

Now we perform a change of variables: in the off-diagonal
term we change coordinates from P to (pcm,k1, . . . ,kN )
with

pcm = p0 +
∑

pi , kj = α
1+Nα (p0 +

∑
pi)− pj ,

while in the diagonal term we replace (q, p̆i) with

q = 1+α
1+Nαpcm +

∑N−1
i=1 ki , kj = α

1+Nαpcm − pj+1 ,
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for j = 1, . . . , N − 1, so that (24) can be rewritten

2N

π

[
2π2
√

1 + 2α

1 + α

∫
dpcmdk̆1 L(k̆1,pcm)

∣∣Ξ̂(k̆1,pcm)
∣∣2

+ (N − 1)

∫
dpcmdk G(k,pcm)Ξ̂(k̆1,pcm) Ξ̂(k̆2,pcm)

]
with k = (k1, . . . ,kN ),

Ξ̂(k̆1,pcm) = Q̂

(
m0+m1

M pcm +

N∑
i=2

ki,
m1

M pcm − k2, . . .

)
and

L(k̆1,pcm) =

 N∑
i=2

k2
i + 2α

1+2α

N∑
i,j=2
i<j

ki · kj

+ (1+α)2

1+2α
µ
M p2

cm

)1/2

, (25)

G(k,pcm) =
1∑

i k
2
i + 2α

1+α

∑
i<j ki · kj + µ

M p2
cm

. (26)

Now we recall that we have to impose the center of mass
condition pcm = 0, so that we finally obtain

(ψ,Hψ) = (w,H0w) +
2N

π
Φ(ξ), (27)

where ξ(K) = Ξ̂(K, 0) and the quadratic form Φ is de-
fined by

Φ(ξ) =

∫
dK̆

(
Φ1(ξ; K̆) + (N − 1)Φ2(ξ; K̆)

)
, (28)

with K̆ = (k1, . . . ,kN−2) and (for N = 2 the extra vari-

ables K̆ are absent)

Φ1(ξ; K̆) =2π2
√

1+2α
1+α

∫
dsL(s, K̆, 0)|ξ̂(s, K̆)|2 , (29)

Φ2(ξ; K̆) =

∫
dsdtG(s, t, K̆, 0) ξ̂(s, K̆)ξ̂(t, K̆) . (30)

Notice that the contribution to the energy due to the
regular part w is

(w,H0w) =

∫
dk1 · · · dkN

(
1

2µ

∑N
i=1 k

2
i

+ 1
m0

∑
i<j ki · kj

)
|ŵ0(k1, . . . ,kN )|2. (31)

As already mentioned in the introduction, the expres-
sion derived here for the energy form (27) is different from
the one used in [6], where a dependence on a parameter
λ is introduced in order to have a square integrable “po-
tential”. In fact, such a parameter is not essential and
the expression (27) used here is much easier to handle.
This makes the stability proof presented here more direct
and clear.

III. POSITIVITY OF THE ENERGY

From the above expression (27) we see that the Theo-
rem is proved if we can show positivity of Φ. Since the
term Φ1 is positive, the problem is reduced to show that

(N − 1)Φ2 ≥ −cΦ1

for some constant c ≤ 1. A proof of this fact will be
given here and for the sake of clarity it will be divided in
several, but elementary, steps. The strategy will be the
reduction of the form Φ2 to one which can be diagonal-
ized. This first requires a suitable change of variables;
then we exploit the rotational symmetry of Φ2 to per-
form a partial wave decomposition; once the additional
degrees of freedom are dropped, the problem reduces to
bound from below a two-particle energy, which can be
diagonalized by means of the Fourier transform; to con-
clude the proof it suffices then to go back to the original
expression and show that, if the condition α ≤ αc is sat-
isfied, Φ is positive. It is worth stressing that at the last
stage of the proof (see, e.g., (40)) the fermionic symmetry
of the charges ξ is totally neglected, in order to diago-
nalize the expression. This is clearly not optimal and an
improvement of the condition (2) would require a differ-
ent approach. In fact the change of variables itself (see
(34)), which is the starting point of our analysis, make
the antisymmetric requirement not apparent and there-
fore should probably be avoided if one wants to track
down the role of the fermionic antisymmetry.

A. Change of variables

We set

p = s+ α
2+α

∑N−2
i=1 ki , q = t+ α

2+α

∑N−2
i=1 ki , (32)

and therefore we obtain

Φ1(ξ; K̆) =2π2

∫
dp
√

1+2α
(1+α)2p

2 +D(K̆) |η(p, K̆)|2 ,

Φ2(ξ; K̆) =

∫
dpdq

η(p, K̆)η(q, K̆)

p2 + q2 + 2α
1+α p · q +D(K̆)

,(33)

where

η(p, K̆) = ξ̂
(
p− α

2+α

∑
ki, K̆

)
, (34)

D(K̆) = 1+3α
(1+α)(1+2α)

(∑
k2
i + 2α

1+3α

∑
i<j ki · kj

)
.

B. Expansion in spherical harmonics

For any f ∈ L2(R3) we consider the expansion

f(p) =

∞∑
l=0

l∑
m=−l

flm(p)Y ml (θp, φp) (35)
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where p = (p, θp, φp) and Y ml denotes the spherical har-
monics of order l,m with l = 0, 1, . . . and m = −l, . . . , l.
Using the above expansion we derive the following de-
composition of Φ2 in each subspace of fixed angular mo-
mentum l:

Φ2(ξ; K̆) =2π

∞∑
l=0

l∑
m=−l

∫ ∞
0

dp

∫ ∞
0

dq ηlm(p, K̆)ηlm(q, K̆)

×
∫ 1

−1

dy
p2q2 Pl(y)

p2 + q2 + 2α
1+αpqy +D(K̆)

=

∞∑
l=0

l∑
m=−l

Gl(ηlm; K̆). (36)

It turns out that (for details see [6, Lemma 3.2])

Gl(ηlm; K̆) ≥ 0 , for l even, (37)

0 ≥ Gl(ηlm; K̆) ≥ G0
l (ηlm) , for l odd, (38)

where G0
l is defined by

G0
l (ηlm) = 2π

∫ 1

−1

dy Pl(y)×

×
∫ ∞

0

dp

∫ ∞
0

dq
p2 ηlm(p, K̆) q2 ηlm(q, K̆)

p2 + q2 + 2α
1+αpqy

. (39)

From (37) and (38) we then get

Φ2(ξ; K̆) ≥
∑
l odd

l∑
m=−l

G0
l (ηlm). (40)

C. Diagonalization

Let us define

g](k) =
1√
2π

∫
dx e−ikx e2x g(ex). (41)

Then

G0
l (g) = 2π

∫ 1

−1

dy Pl(y)×

×
∫

dx1dx2
e3x1g(ex1) e3x2g(ex2)

e2x1 + e2x2 + 2α
1+αy e

x1+x2

= π

∫ 1

−1

dy Pl(y)

∫
dx1dx2

e2x1g(ex1) e2x2g(ex2)

cosh(x1 − x2) + α
1+αy

.

The last integral is a convolution and therefore can be
diagonalized by means of Fourier transform. Using the
explicit Fourier transform of the kernel (see, e.g., [8]) we
find for l odd

G0
l (ηlm) =

∫
dk Sl(k) |η]lm(k, K̆)|2 , (42)

Sl(k) = − π2

sinh(π2 k)
,

∫ 1

−1

dy Pl(y)
sinh(k arcsin α

1+αy)
cos(arcsin α

1+αy)
, (43)

and the estimate (40) becomes

Φ2(ξ; K̆) ≥
∑
l odd

l∑
m=−l

∫
dk Sl(k) |η]lm(k, K̆)|2 . (44)

D. Bound from below

We notice that, for any fixed l, Sl(k) is an even, C∞

function of k and limk→∞ Sl(k) = 0. Furthermore for l
odd we can show that Sl(k) is an increasing function of
l for any fixed k (for details see [6, Lemma 3.5]). Then
Sl(k) ≥ S1(k). Moreover it is easy to see that

S1(k) ≥ S1(0) = 4π 1+α
α

[√
1+2α
α arcsin

(
α

1+α

)
− 1
]

(45)

where S1(0) < 0. Therefore from (44) we have

Φ2(ξ; K̆) ≥ −|S1(0)|
∞∑
l=0

l∑
m=−l

∫
dk |η]lm(k, K̆)|2 , (46)

which can be rewritten in such a way to reconstruct the
term Φ1. Indeed∫

dk |η]lm(k, K̆)|2 =

∫
R
dx e2x|ηlm(ex, K̆)|2

≤ 1+α√
1+2α

∫ ∞
0

dp p2
√

1+2α
(1+α)2 p

2 +D(K̆) |ηlm(p, K̆)|2 .

Using this estimate in (46) we find

Φ2(ξ; K̆) ≥ −|S1(0)| 1+α√
1+2α

×

×
∞∑
l=0

l∑
m=−l

∫ ∞
0

dp p2
√

1+2α
(1+α)2 p

2 +D(K̆) |ηlm(p, K̆)|2

= −|S1(0)| 1+α√
1+2α

∫
dp
√

1+2α
(1+α)2 p

2 +D(K̆) |η(p, K̆)|2

= −|S1(0)| 1+α
2π2
√

1+2α
Φ1(ξ; K̆) = −Λ(α,N)

(N−1) Φ1(ξ; K̆) .

We are now in position to conclude the proof of the The-
orem. From (27), (28) and the inequality above, we get

(ψ,Hψ) ≥ 2N
π Φ(ξ) ≥ 2N

π (1− Λ(α,N))

∫
dK̆Φ1(ξ; K̆),

and taking α ≤ αc(N) we obtain the desired result
(ψ,Hψ) ≥ 0.

IV. CONCLUSIONS

We have reported on a derivation of a sufficient con-
dition on the mass ratio for the stability for the unitary
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N + 1 fermionic model. Such a condition, which is op-
timal only in the two-particle case, is nevertheless non
trivial for generic N . For istance it provides stability in
the case of equal masses up to N = 8. We have also
described the main steps of the proof, enlightening the
points to be improved to get a more refined stability con-
dition.

V. APPENDIX

We first prove the asymptotic expression (16) for the
potential GQ for yi = x0 − xi → 0 with r0i fixed. Let
us consider first the diagonal term in the sum (14) and
change variables from (x0,xi) to (yi, r0i):

∫
dP eip̆i·x̆i exp

{
ip0 ·

(
r0i + α

1+αyi

)}
×

× exp
{
ipi ·

(
r0i − 1

1+αyi

)} Q̂(p0 + pi, p̆i)

h0(P)
=∫

dp̆ie
ip̆i·x̆i

∫
dqie

iqi·r0iQ̂(qi, p̆i)

∫
dvi

eivi·yi

h0(qi,vi, p̆i)
,

where we have changed variables to

qi = p0 + pi, vi = α
1+αp0 − 1

1+αpi, (47)

and in the new variables

h0(qi,vi, p̆i) =
q2
i

2(m0+m1) +
v2
i

2µ +
p̆2
i

2m1
. (48)

The last integral can be computed explicitly using

1

(2π)3

∫
dk eik·y

1

k2 + λ
=
e−
√
λ|y|

4π|y|
, (49)

so that the diagonal term in (14) becomes

(−1)i+1

(2π)
3
2N

∫
dp̆i e

ip̆i·x̆i
∫

dqi e
iqi·r0i Q̂(qi, p̆i)

4π|yi|
×

× exp
{
−
√

α
(1+α)2q

2
i + 1

1+α p̆
2
i |yi|

}
. (50)

Expanding the exponential around yi = 0, we obtain

(−1)i+1

(2π)
3
2N

∫
dp̆ie

ip̆i·x̆i
∫

dqi e
iqi·r0iQ̂(qi, p̆i)×

×
(

1

|yi|
−
√

α
(1+α)2q

2
i + 1

1+α p̆
2
i

)
+ o(1). (51)

The first term in the expression above reproduces the sin-

gular contribution (−1)i+1

|yi| Q(r0i, x̆i) and we set the sec-

ond term equal to the diagonal part of ΓiQ. On the other
hand the off-diagonal terms with j 6= i in (14) are finite
and can be simply evaluated at yi = 0, so providing the
off-diagonal part of ΓiQ.

Let us verify that the potential GQ satisfies equation
(18). From the definition (14) and the expression of H0

(H0GQ)(X)

=
1

µ

N∑
j=1

(−1)j+1

(2π)
3
2N+2

∫
dP eiP·X Q̂(p0 + pj , p̆j)

= 4π
∑
i

(−1)i+1Q(r0i, x̆i) δ(xi − x0). (52)
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