Switched capacitor sample and hold (SHA) stages in deep submicron technologies can achieve hundreds of mega samples per second of sampling frequency, but are affected by several nonlinear effects which reduce their signal-to-noise-and-distortion ratio (SNDR): CMOS switch non-idealities, amplifier nonlinearity, and incomplete settling. It is possible to model and correct distortions using Volterra kernels, which can be rather resource-consuming as the number of parameters to estimate rapid increases with the order and length of the kernels. In this reported work, it is shown that a switched capacitor SHA, simulated using the 45 nm process by STMicroelectronics, can be calibrated to achieve a 10-24 dB improvement in SNDR. Computational costs are kept low using a different lag value for each kernel, and iteratively pruning the elements of the Volterra kernels which affect linearity the least. A technique for estimation and out-of- sample validation is presented and robustness checks are performed. A performance gain of 8.5 dB can be achieved with as few as 17 correction parameters, while 21 coefficients are enough to gain 12.2 dB, and 36 to gain 18.4 dB.

Calibrating sample and hold stages with pruned Volterra kernels / Centurelli, Francesco; Monsurro', Pietro; Rosato, Felice; Ruscio, Danilo; Trifiletti, Alessandro. - In: ELECTRONICS LETTERS. - ISSN 0013-5194. - STAMPA. - 51:25(2015), pp. 2094-2096. [10.1049/el.2015.3269]

Calibrating sample and hold stages with pruned Volterra kernels

CENTURELLI, Francesco;MONSURRO', PIETRO;ROSATO, FELICE;RUSCIO, DANILO;TRIFILETTI, Alessandro
2015

Abstract

Switched capacitor sample and hold (SHA) stages in deep submicron technologies can achieve hundreds of mega samples per second of sampling frequency, but are affected by several nonlinear effects which reduce their signal-to-noise-and-distortion ratio (SNDR): CMOS switch non-idealities, amplifier nonlinearity, and incomplete settling. It is possible to model and correct distortions using Volterra kernels, which can be rather resource-consuming as the number of parameters to estimate rapid increases with the order and length of the kernels. In this reported work, it is shown that a switched capacitor SHA, simulated using the 45 nm process by STMicroelectronics, can be calibrated to achieve a 10-24 dB improvement in SNDR. Computational costs are kept low using a different lag value for each kernel, and iteratively pruning the elements of the Volterra kernels which affect linearity the least. A technique for estimation and out-of- sample validation is presented and robustness checks are performed. A performance gain of 8.5 dB can be achieved with as few as 17 correction parameters, while 21 coefficients are enough to gain 12.2 dB, and 36 to gain 18.4 dB.
2015
Capacitors; signal to noise ratio; Volterra kernels
01 Pubblicazione su rivista::01a Articolo in rivista
Calibrating sample and hold stages with pruned Volterra kernels / Centurelli, Francesco; Monsurro', Pietro; Rosato, Felice; Ruscio, Danilo; Trifiletti, Alessandro. - In: ELECTRONICS LETTERS. - ISSN 0013-5194. - STAMPA. - 51:25(2015), pp. 2094-2096. [10.1049/el.2015.3269]
File allegati a questo prodotto
File Dimensione Formato  
Centurelli_Calibrating_2015.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 252.07 kB
Formato Adobe PDF
252.07 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/842978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact