We present KnoWDiaL, an approach for Learning and using task-relevant Knowledge from human-robot Dialog and access to the Web. KnoWDiaL assumes that there is an autonomous agent that performs tasks, as requested by humans through speech. The agent needs to “understand” the request, (i.e., to fully ground the task until it can proceed to plan for and execute it). KnoWDiaL contributes such understanding by using and updating a Knowledge Base, by dialoguing with the user, and by accessing the web. We believe that KnoWDiaL, as we present it, can be applied to general autonomous agents. However, we focus on our work with our autonomous collaborative robot, CoBot, which executes service tasks in a building, moving around and transporting objects between locations. Hence, the knowledge acquired and accessed consists of groundings of language to robot actions, and building locations, persons, and objects. KnoWDiaL handles the interpretation of voice commands, is robust regarding speech recognition errors, and is able to learn commands involving referring expressions in an open domain, (i.e., without requiring a lexicon). We present in detail the multiple components of KnoWDiaL, namely a frame-semantic parser, a probabilistic grounding model, a web-based predicate evaluator, a dialog manager, and the weighted predicate-based Knowledge Base. We illustrate the knowledge access and updates from the dialog and Web access, through detailed and complete examples. We further evaluate the correctness of the predicate instances learned into the Knowledge Base, and show the increase in dialog efficiency as a function of the number of interactions. We have extensively and successfully used KnoWDiaL in CoBot dialoguing and accessing the Web, and extract a few corresponding example sequences from captured videos.
Learning Task Knowledge from Dialog and Web Access / Perera, Vittorio; Soetens, Robin; Kollar, Thomas; Samadi, Mehdi; Sun, Yichao; Nardi, Daniele; van de Molengraft, René; Veloso, Manuela. - In: ROBOTICS. - ISSN 2218-6581. - STAMPA. - 4:2(2015), pp. 223-252. [10.3390/robotics4020223]
Learning Task Knowledge from Dialog and Web Access
NARDI, Daniele
;
2015
Abstract
We present KnoWDiaL, an approach for Learning and using task-relevant Knowledge from human-robot Dialog and access to the Web. KnoWDiaL assumes that there is an autonomous agent that performs tasks, as requested by humans through speech. The agent needs to “understand” the request, (i.e., to fully ground the task until it can proceed to plan for and execute it). KnoWDiaL contributes such understanding by using and updating a Knowledge Base, by dialoguing with the user, and by accessing the web. We believe that KnoWDiaL, as we present it, can be applied to general autonomous agents. However, we focus on our work with our autonomous collaborative robot, CoBot, which executes service tasks in a building, moving around and transporting objects between locations. Hence, the knowledge acquired and accessed consists of groundings of language to robot actions, and building locations, persons, and objects. KnoWDiaL handles the interpretation of voice commands, is robust regarding speech recognition errors, and is able to learn commands involving referring expressions in an open domain, (i.e., without requiring a lexicon). We present in detail the multiple components of KnoWDiaL, namely a frame-semantic parser, a probabilistic grounding model, a web-based predicate evaluator, a dialog manager, and the weighted predicate-based Knowledge Base. We illustrate the knowledge access and updates from the dialog and Web access, through detailed and complete examples. We further evaluate the correctness of the predicate instances learned into the Knowledge Base, and show the increase in dialog efficiency as a function of the number of interactions. We have extensively and successfully used KnoWDiaL in CoBot dialoguing and accessing the Web, and extract a few corresponding example sequences from captured videos.File | Dimensione | Formato | |
---|---|---|---|
Perera_Learning-Task-Knowledge_2015.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
471.57 kB
Formato
Adobe PDF
|
471.57 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.