In this paper we study a gradient flow approach to the problem of quantization of measures in space dimension one. By embedding our problem in L2, we find a continuousversion of this problem corresponding to the limit as the number of atoms in the approximating measure tends to infinity. Under some suitable regularity assumptions on the density, we prove uniform stability and quantitative convergence results for the discrete and continuous dynamics.

A gradient flow approach to quantization of measures / Caglioti, Emanuele; Francois, Golse; Iacobelli, Mikaela. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 10:25(2015), pp. 1845-1885. [10.1142/S0218202515500475]

A gradient flow approach to quantization of measures

CAGLIOTI, Emanuele;IACOBELLI, MIKAELA
2015

Abstract

In this paper we study a gradient flow approach to the problem of quantization of measures in space dimension one. By embedding our problem in L2, we find a continuousversion of this problem corresponding to the limit as the number of atoms in the approximating measure tends to infinity. Under some suitable regularity assumptions on the density, we prove uniform stability and quantitative convergence results for the discrete and continuous dynamics.
2015
Quantization of measures; Monge–Kantorovich distance; gradient flow; parabolicequation
01 Pubblicazione su rivista::01a Articolo in rivista
A gradient flow approach to quantization of measures / Caglioti, Emanuele; Francois, Golse; Iacobelli, Mikaela. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 10:25(2015), pp. 1845-1885. [10.1142/S0218202515500475]
File allegati a questo prodotto
File Dimensione Formato  
Caglioti_gradient-flow_2015.pdf

solo gestori archivio

Note: articolo
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 418.6 kB
Formato Adobe PDF
418.6 kB Adobe PDF   Contatta l'autore
Caglioti_Gradient-flow_2015.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 566.58 kB
Formato Adobe PDF
566.58 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/784245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact