We consider an initial value problem for a doubly degenerate parabolic equation in a noncompact Riemannian manifold. The geometrical features of the manifold are coded in either a Faber-Krahn inequality or a relative Faber-Krahn inequality. We prove optimal decay and space-time local estimates of solutions. We employ a simplified version of the by now classical local approach by DeGiorgi, Ladyzhenskaya-Uraltseva, DiBenedetto which is of independent interest even in the euclidean case.

Optimal decay rate for degenerate parabolic equations on noncompact manifolds / Andreucci, Daniele; A. F., Tedeev. - In: METHODS AND APPLICATIONS OF ANALYSIS. - ISSN 1073-2772. - STAMPA. - 22:4(2015), pp. 359-376. [10.4310/MAA.2015.v22.n4.a2]

Optimal decay rate for degenerate parabolic equations on noncompact manifolds

ANDREUCCI, Daniele;
2015

Abstract

We consider an initial value problem for a doubly degenerate parabolic equation in a noncompact Riemannian manifold. The geometrical features of the manifold are coded in either a Faber-Krahn inequality or a relative Faber-Krahn inequality. We prove optimal decay and space-time local estimates of solutions. We employ a simplified version of the by now classical local approach by DeGiorgi, Ladyzhenskaya-Uraltseva, DiBenedetto which is of independent interest even in the euclidean case.
2015
degenerate parabolic equations; riemannian manifolds; Faber-Krahn inequality
01 Pubblicazione su rivista::01a Articolo in rivista
Optimal decay rate for degenerate parabolic equations on noncompact manifolds / Andreucci, Daniele; A. F., Tedeev. - In: METHODS AND APPLICATIONS OF ANALYSIS. - ISSN 1073-2772. - STAMPA. - 22:4(2015), pp. 359-376. [10.4310/MAA.2015.v22.n4.a2]
File allegati a questo prodotto
File Dimensione Formato  
Andreucci_Optimal_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 218.67 kB
Formato Adobe PDF
218.67 kB Adobe PDF   Contatta l'autore
Andreucci_Optimal_2015.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 219.61 kB
Formato Adobe PDF
219.61 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/784162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact