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Abstract. We consider an initial value problem for a doubly degenerate par-
abolic equation in a noncompact Riemannian manifold. The geometrical fea-
tures of the manifold are coded in either a Faber-Krahn inequality or a rel-
ative Faber-Krahn inequality. We prove optimal decay and space-time local
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1. Introduction.

Let (M, g) be a smooth Riemannian manifold of dimension N ≥ 2. We assume
M to be connected, complete and noncompact. More precise assumptions on the
metric of M will be given below.

We look at nonnegative solutions of the equations of the type of

ut = div(um−1|∇u|p−2 ∇u) , in M × (0, T ), (1.1)

u(x, 0) = u0(x) , x ∈ M . (1.2)

The operators div and ∇ are of course understood in the sense of the Riemannian
metric. We always assume p > 1, m > 0, m + p > 3. This range of parameters is
often referred to as the slow diffusion case.

We prove optimal L1-L∞ a priori estimates. In the linear case m = 1, p = 2
such bounds are well known, see [13], [17], [18], [11]. In the degenerate case when
m = 1 we quote [12], [7], [15], [16]. We also quote some papers whose methods,
even when stated in Euclidean spaces, are amenable to application to manifolds,
being based on embedding estimates known to extend to this setting under some
geometrical assumptions: [6], [8], [21], [22].
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In order to describe our results we need introduce some notation; we let for
R > 0

BR(x0) = {x ∈ M | dist(x, x0) < R} , V (R) = |BR(x0)| ,

where x0 ∈ M is a fixed point; in the following we’ll often drop the dependence on
x0 from the notation. We also define the two functions

R : (0,∞) → (0,∞) inverse function to s 7→ V (s);

Z : (0,∞) → (0,∞) inverse function to s 7→ spV (s)p+m−3.

It is known that solutions to (1.1) in a domain Ω ⊂ R
N with noncompact boundary,

with zero boundary data of Neumann type satisfy decay estimates of the form

‖u(t)‖∞,Ω ∼
‖u0‖1,Ω

V
(

Z(t‖u0‖m+p−3
1,Ω )

) , t ≫ 1 , (1.3)

where we extend our definitions above to the case M = Ω. Indeed (1.3) was proven
in [3] for expanding domains, and in [2], [4] for narrowing domains, in the case of
(1.1). In the linear case the estimate (1.3) was proven by Gushchin (see [24] and

the references therein) in R
N , and in [17], [18] in Riemannian manifolds.

Our first aim in this paper is to obtain the analog of (1.3) in Riemannian man-
ifolds. In the Riemannian setting we discriminate between manifolds satisfying
a global or a relative Faber-Krahn inequality. This distinction replaces the one
between expanding and narrowing subdomains of R

N .

Definition 1.1. (M, g) satisfies a global Faber-Krahn inequality for a given p > 1
and a function Λp : R

+ → R
+ if for any v > 0 and precompact domain Ω ⊂ M

with |Ω| = v we have

Λp(v)

∫

Ω

|ϕ|p dµ ≤

∫

Ω

|∇ϕ|p dµ , (1.4)

for all ϕ ∈ W 1,p
0 (Ω). �

Remark 1.2. It is a classical fact that when p = 2 the optimal choice of the constant
on the left hand side of (1.4) is given by the first eigenvalue λ1(Ω) of the Laplacian;
a similar remark holds true for the case p 6= 2, see [27]. The classical Faber-Krahn
inequality, when p = 2, and its counterparts for p 6= 2 essentially consist in a bound
from below for such optimal constants given in terms of the volume of Ω; we refer
the reader to [28]. �

We also need the following assumption:

H.1 There exists an α > 0 such that the function s 7→ s−αΛp(s−1), s > 0,
is nondecreasing, and s 7→ Λp(s), s > 0, is decreasing.

Theorem 1.3. Assume that M satisfies a global Faber-Krahn inequality, with Λp as

in H.1. Let u0 ∈ L1(M) be nonnegative. Then problem (1.1), (1.2) has a solution

defined in M × (0,∞), and for all t > 0

‖u(t)‖m+p−3
∞,M Λp

( ‖u0‖1,M

‖u(t)‖∞,M

)

≤ γt−1 . (1.5)

In Theorem 1.3 and in the rest of the paper we denote by γ, γ1, . . . , possibly
different positive constants depending only on the parameters of the problem p, m,
N , . . . , and on the constants α, αj appearing in the assumptions. We also assume
that volume is normalized so that V (1) = 1.
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Remark 1.4. One can check easily, from the definition of the function Z, that (1.5)
implies its possibly more transparent version

‖u(t)‖∞,M ≤ γ
‖u0‖1,M

V
(

Z(t‖u0‖m+p−3
1,M )

) , t > 1 , (1.6)

provided we have for some α0 > 0

Λp(v) ≥
α0

R(v)p
, v > 1 , (1.7)

which is known to hold true in many important examples. See however Section 1.1
below for further comments and a counterexample. �

Remark 1.5. It is well known that if a suitable isoperimetric inequality is available
in M , then the Faber-Krahn inequality holds true, see e.g, [14]. One can apply
the symmetrization technique to get such bound; see [10], [9]. On this matter we
also quote [19]. In [14] also the relation between Sobolev type embeddings and
Faber-Krahn inequality is discussed; actually the two are equivalent at least if Λp

is the same as in the Euclidean space. �

For a nonnegative locally integrable function f and R ≥ 1 define

|||f |||R = sup
R≥R

R− p

p+m−3V (R)−1

∫

BR

f dµ .

Our local in time existence results can be stated in terms of the norm just defined.

Theorem 1.6. Assume that M satisfies a global Faber-Krahn inequality, with Λp

as in H.1, and in (1.7). Let u0 ∈ L1
loc(M) be nonnegative, and such that |||u0|||R <

∞. Then problem (1.1), (1.2) has a solution defined in M × (0, TR), where TR =

γ0|||u0|||3−p−m

R
, and such that for 0 < t < TR, R ≥ R,

|||u(t)|||R ≤ γ|||u0|||R , (1.8)

‖u0‖∞,BR
≤ γ

V (R)R
p

p+m−3 |||u0|||R
V

(

Z(tV (R)p+m−3Rp|||u0|||p+m−3

R
)
) . (1.9)

Remark 1.7. It is worth mentioning that when |||u0|||R → 0 as R → +∞, Theo-
rem 1.6 actually implies existence of a solution defined for all t > 0. Indeed, since
TR → +∞ as R → +∞ in the case at hand, we immediately derive from (1.9)
a priori sup estimates in any compact of M × (0,+∞). This remark and a stan-
dard approximation procedure e.g., by solutions with smooth compactly supported
initial data yield the result. �

1.1. Examples. Let Mk = R
k × SN−k. Here 1 ≤ k < N and SN−k is the N − k-

dimensional sphere. In this case (see [14])

Λp(v) = γ(N, k) min
(

v− p
N , v− p

k

)

, (1.10)

and (1.5) amounts to

‖u(t)‖∞,Mk
≤ γ

× max
(

t−
k

k(m+p−3)+p ‖u0‖
p

k(m+p−3)+p

1,Mk
, t−

N
N(m+p−3)+p ‖u0‖

p

N(m+p−3)+p

1,Mk

)

. (1.11)

More generally, the function Λp for product manifolds is given in [14] as a suitable
combination of the corresponding functions of the factors.
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This example can be used to show that our upper estimate, that is (1.11) in this

case, is actually optimal. Indeed, the Cauchy problem (1.1)–(1.2) set in R
k has a

well known self-similar solution globally integrable in space, exhibiting the asymp-
totic decay rate given by the first term in the max function in (1.11). However,
this solution is clearly also a solution of the Cauchy problem in Mk, since it does
not depend on the last N − k variables, and it is globally integrable in Mk, since
the factor SN−k is compact. Hence the claim.

As a further example we consider the revolution surface

Mα = {x = (x′, xN+1) | |x′| = xα
N+1} ⊂ R

N+1 , (1.12)

with 0 < α < 1. Invoking the connection between the isoperimetric and Faber-
Krahn inequalities, see Remark 1.5, we can check by fairly explicit calculations
that in this case the function Λp can be written as in (1.10), when we formally
replace k there with α(N − 1) + 1.

Remark 1.8. The linear case m = 1, p = 2 of the heat equation has been intensively
studied. For example in [20] Section 1.2, the authors consider a class of manifolds
falling within the scope of our results: specifically manifolds Mk#Mn, 2 < k < n <
N where Mk, Mn are as above and the symbol # denotes connection by a compact
handle. In this case we can take Λp as in (1.10), whence our estimate (1.11) follows.
As a further argument supporting its optimality we notice that the authors of [20]
prove two sided estimates of the heat kernel reducing to the same decay rate we
obtain in (1.11) when we formally let m = 1, p = 2 there. However our approach
is completely different from the one in [20].
As a side remark we note that Mk#Mn provides a counterexample where (1.7) is
not fulfilled. Indeed for large R, V (R) ≃ Rn. �

1.2. The case of relative Faber-Krahn inequalities.

Definition 1.9. (M, g) satisfies a relative Faber-Krahn inequality for a given p > 1
and a function Λp : R

+ × R
+ → R

+ if for any v > 0, R > 1, and precompact
domain Ω ⊂ BR(x0) with |Ω| = v ≤ |BR(x0)|/2 we have

Λp(v,R)

∫

Ω

|ϕ|p dµ ≤

∫

Ω

|∇ϕ|p dµ , (1.13)

for all ϕ ∈ W 1,p
0 (Ω). �

We need the following assumptions:

H.2 There exist α1, α2 ∈ (0, 1) such that both functions V (s)/sα1 , sα2/V (s)
are nondecreasing for s ≥ 1.
H.3 The function Λp takes the form

Λp(v,R) = γmin
(V (R)p

vpRp
, v− p

N

)

, v > 0 , R > 1 .

Assumption H.2 immediately implies that for all c ≥ 1, R ≥ 1

c−α2V (cR) ≤ V (R) ≤ c−α1V (cR) . (1.14)

Remark 1.10. The form of Λp in H.3 is natural, at least in the case when M is a

narrowing domain in R
N , since in that case the ratio V (R)/R takes the intuitive

meaning of area of BR(0) ∩M (see [23], [4]). In the case of Riemannian manifolds
a similar form of Λp has been used in [17]. �
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The following definition is instrumental in our approach:

F (s) =
s

V (s)
, s > 1 ; F (s) =

1

V (1)
= 1 , 0 ≤ s ≤ 1 .

As a consequence of H.2, F is non-decreasing and

F ′(s) ≤
1

V (s)
, s > 0 . (1.15)

Let us define the standard Barenblatt exponent

β = N(p+ m− 3) + p .

Theorem 1.11. Assume that M satisfies a relative Faber-Krahn inequality with

Λp as in (1.13) and in H.2, H.3. Let u0 ∈ L1
loc(M) be nonnegative, and such that

|||u0|||R < ∞. Then problem (1.1), (1.2) has a solution defined in M × (0, T0), where

T0 = γ0|||u0|||3−p−m

R
, and such that for 0 < t < T0, R ≥ R,

|||u(t)|||R ≤ γ|||u0|||R , (1.16)

‖u0‖∞,BR
≤ γR

p
p+m−3 max

{

t−
N
β |||u0|||

p/β

R
, t−

1
2p+m−3 |||u0|||

p

2p+m−3

R

}

. (1.17)

Moreover, if ‖u0‖1 < ∞, then for any R > 1 and any t > 0

‖u(t)‖∞,BR
≤ γmax

{

t−
N
β ‖u0‖

p

β

1 , t−
1

2p+m−3 ‖u0‖
p

2p+m−3

1 F (R)
p

2p+m−3

}

. (1.18)

The global boundedness of u(t) is connected to the moment

I(t) =

∫

M

u(x, t)F
(

dist(x, x0)
)

dµ , I0 = I(0) .

Theorem 1.12. Assume that M satisfies a relative Faber-Krahn inequality with Λp

as in (1.13) and in H.2, H.3. Let u0 ∈ L1(M) be such that I0 < ∞. Then problem

(1.1), (1.2) has a solution defined in M × (0,+∞) and for all t > 0 we have

‖u(t)‖∞,M ≤ γU(t) , (1.19)

where

U(t) = max
{

t−
N
β ‖u0‖

p

β

1,M , t−
1

2p+m−3 I
p

2p+m−3

0 ,

t−
1

2p+m−3 ‖u0‖
p

2p+m−3

1,M F
[

Z
(

‖u0‖m+p−3
1,M t

)]

p

2p+m−3

}

. (1.20)

Therefore for large enough t (1.5) still holds true.

Remark 1.13. We need in Theorem 1.12 the assumption I0 < ∞, which is known
to be necessary to obtain uniform sup estimates in narrowing domains, see [26], [2].
However the form of the sup estimate for large times is the same in Theorem 1.12 as
in (1.6). Indeed for large t the greatest of the three arguments in the max function
in (1.20) is the third one. On substituting in it the definition of F and then using
the definition of Z we see that this argument equals the right hand side of (1.6). �
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1.3. Example of M with relative Faber-Krahn inequality. Let

M = {x = (x′, xN+1) | |x′| = f(xN+1)} ⊂ R
N+1

be the surface in R
N+1 obtained by revolution of the graph of f , where f ∈ C∞(R)

is a positive function such that f(s) = |s|−b for |s| > 1, with 0 < b < 1/N . In this
case calculations similar to the ones in [4] yield

V (s) = γs1−Nb(1 + o(1)) , s → ∞ .

Thus (1.19) implies

‖u(t)‖∞,M ≤ γ‖u0‖
p

βM

1,M t
− 1−Nb

βM , t ≫ 1 ,

‖u(t)‖∞,M ≤ γ‖u0‖
p

β

1,M t−
N
β , t ≪ 1 ,

where β = N(p+m− 3) + p, βM = (1 −Nb)(m+ p− 3) + p.

Theorem 1.3 is proven in Section 2. The proof of Theorem 1.6 follows from
very similar arguments, combined with a suitable localization procedure (see also
Section 4), and is therefore omitted.

The proof of Theorem 1.11 is prepared by an embedding result given in Section 3,
and then presented in Section 4. Finally, Theorem 1.12 is proven in Section 5.

Actually, for the sake of brevity we confine ourselves to proving the sup bounds
contained in the Theorems above, assuming we are dealing, for example, with so-
lutions to Dirichlet problems, with vanishing boundary data, in some ball Bj . The
existence statement, and the sup bounds as well of course, are then recovered as
j → ∞ by a standard approximation argument relying on by now classical com-
pactness results for equibounded solutions.

Acknowledgments. We are indebted to the referee for several useful remarks.

2. Proof of Theorem 1.3.

Let f ∈ W 1,p(M) be compactly supported and k ≥ 0; then it follows from
applying the Faber-Krahn inequality to ϕ = (f − k)+ that

∫

M

(f − k)p
+ dµ ≤ Λp

(

|{f > k}|
)−1

∫

M

|∇(f − k)+|p dµ . (2.1)

We also infer by means of Hölder inequality that for 0 < q < p

∫

M

(f − k)q
+ dµ ≤ |{f > k}|

1− q
p Λp

(

|{f > k}|
)− q

p

×
(

∫

M

|∇(f − k)+|p dµ
)

q
p

. (2.2)

In the following we denote by u a compactly supported (for all times) solution to
(1.1)–(1.2), or a solution to a Dirichlet problem set in a ball Bj , with vanishing
boundary data, in the spirit of a procedure of approximation as remarked in the
Introduction. We need the auxiliary result
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Lemma 2.1. Let ϑ > 0, and ϑ > 2 − m if m < 1, be fixed, and define s =
(p+m+ ϑ− 2)/p. Fix also a1 > a2 > 0, τ1 > τ2 > 0, R2 > R1. Then

sup
τ1<τ<t

∫

BR1

(u(τ) − a1)ϑ+1
+ dx+

t
∫

τ1

∫

BR1

|∇(u− a1)s
+|p dxdτ ≤ γ

( a1

a1 − a2

)|m−1|

×
{

(τ1 − τ2)−1

t
∫

τ2

∫

BR2

(u− a2)ϑ+1
+ dxdτ + (R2 −R1)−p

t
∫

τ2

∫

BR2

(u− a2)sp
+ dxdτ

}

.

(2.3)

The last integral in (2.3) can be dropped from the right hand side, provided we

formally replace on both sides BR1 and BR2 with M . We refer to this version of

the estimate as to the global version of (2.3).

We omit the routine proof of Lemma 2.1, which is essentially obtained by multi-
plying (1.1) by (u−k)ϑ

+ζ
p, where ζ is a suitable cutoff function, and then integrating

by parts; see e.g., [5].

Proof of Theorem 1.3. Let us define for h0 > h∞ > 0, τ0 > τ∞ > 0, and i = 0, 1,
2, . . . ,

ki = h∞ + (h0 − h∞)2−i , ti = τ∞ + (τ0 − τ∞)2−i , fi = (u − ki)
p+m+ϑ−2

p

+ .

Next we infer from (2.2) and Young’s inequality, for any fixed time τ , and σ > 0,
0 < q < p to be chosen,

∫

M

f q
i+1 dµ ≤ Λp

(

|{u > ki+1}|
)− q

p |{u > ki+1}|
1− q

p

(

∫

M

|∇ fi+1|p dµ
)

q
p

≤ σ
p

q

∫

M

|∇ fi+1|p dµ+ γσ− p

p−qΛp

(

|{u > ki+1}|
)− q

p−q |{u > ki+1}| .

On integrating this inequality in time, we obtain

t
∫

ti+1

∫

M

f q
i+1 dµ dτ ≤ σ

p

q

t
∫

ti+1

∫

M

|∇ fi+1|p dµ

+ γtσ− p
p−qΛp

(

sup
ti+1<τ<t

|{u > ki+1}|
)− q

p−q

sup
ti+1<τ<t

|{u > ki+1}| . (2.4)

Select from now on

q =
p(1 + ϑ)

p+m− 2 + ϑ
.

7



On combining now (2.4) and the global version of (2.3), where we let a1 = ki,
a2 = ki+1, τ1 = ti, τ2 = ti+1, we get for a suitable choice of σ > 0

sup
ti<τ<t

∫

M

f q
i dµ+

t
∫

ti

∫

M

|∇ fi|
p dµ dτ ≤ ε

t
∫

ti+1

∫

M

|∇ fi+1|p dµ

+ γγi
1ε

− q
p−q t(τ0 − τ∞)− p

p−q

( h0

h0 − h∞

)

p|m−1|
p−q

× Λp

(

sup
ti+1<τ<t

|{u > ki+1}|
)− q

p−q

sup
ti+1<τ<t

|{u > ki+1}| ,

whence, by suitably selecting ε > 0 and by iterating on i, we get

sup
τ0<τ<t

∫

M

(u(τ) − h0)1+ϑ
+ dx ≤ γt(τ0 − τ∞)− p

p−q

( h0

h0 − h∞

)

p|m−1|
p−q

× Λp

(

sup
τ∞<τ<t

|{u > h∞}|
)− q

p−q

sup
τ∞<τ<t

|{u > h∞}| . (2.5)

We complete the proof by means of a second iterative process; to this end we
introduce for k > 0 and n = 0, 1, 2, . . . the sequences

Kn = k(1 − 2−n−1) , K̄n = (Kn +Kn+1)/2 , t′n = t(1 − 2−n−1) ,

Then we apply (2.5) with τ0 = t′n+1, τ∞ = t′n, h0 = K̄n, h∞ = Kn to conclude

Yn+1 := sup
t′

n+1<τ<t

|{u > Kn+1}| ≤ γγn
1 k

−(1+ϑ) sup
t′

n+1<τ<t

∫

M

(u − K̄n)1+ϑ
+ dx

≤ γγn
1 t

− q

p−q k−(1+ϑ)Λp(Yn)− q

p−q Yn .

It follows from Lemma 5.6 p.65 of [25], and from assumption H.1, that Yn → 0 as
n → ∞ and therefore ‖u(t)‖∞ ≤ k, provided

t−
q

p−q k−(1+ϑ)Λp(Y0)− q

p−q ≤ δ , (2.6)

for a suitable δ = δ(m, p, q) > 0. Next we note that

Y0 ≤ 2k−1‖u0‖1 .

Therefore, (2.6) is satisfied if

t−1k−(p+m−3)Λp(k−1‖u0‖1)−1 ≤ 2−αδ
p+m−3

1+ϑ . (2.7)

Finally we choose k as

(k‖u0‖−1
1 )p+m−3Λp(k−1‖u0‖1) = 21+αδ− p+m−3

1+ϑ t−1‖u0‖
−(p+m−3)
1 .

Then (2.7) holds true and since ‖u(t)‖∞ ≤ k the sought after result readily follows.
�
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3. A multiplicative inequality implied by the relative Faber-Krahn

inequality.

Define for all θ > 0, 0 < c < q, R > 0, and a sufficiently regular f ≥ 0 ,

Eθ =

∫

BR

fθ dµ , E = E
q

q−c
c E

− c
q−c

q ,

ω(E,R) = max
{

1, RV (R)−1E
N−1

N

}

.

Lemma 3.1. Assume that M satisfies a relative Faber-Krahn inequality with Λp as

in (1.13), H.3. Assume that f is a Sobolev function such that ∇ f ∈ Lp(M), and

supp f ⊂ BR. Then there exists a constant ϑ0(q) > 0 such that if

E ≤ ϑ0V (R) , (3.1)

then for all 1 ≤ q ≤ p, 0 < c < q,

‖f‖q,BR
≤ γω(E,R)E

1
q

− 1
p

+ 1
N ‖∇f‖p,BR

. (3.2)

Remark 3.2. The estimate (3.2) is in fact true for q(N − p) ≤ Np. However, here
we use it only for q ≤ p (the proof for q > p may be given following [4]). In this
connection we remark that Hölder’s inequality yields

E ≤ |supp f | . (3.3)

�

Proof. Let A(λ) = {x ∈ BR : f(x) > λ}; then we have for any k > 0

Eq =

∫

A(k)

(f − k + k)q dµ+

∫

BR\A(k)

f q dµ

≤ 2q−1

∫

A(k)

(f − k)q dµ+ 2q−1kq|A(k)| + kq−cEc . (3.4)

Observing that |A(k)| ≤ k−cEc, we get from (3.4)

Eq ≤ 2q−1

∫

A(k)

(f − k)q dµ+ (2q−1 + 1)kq−cEc . (3.5)

Select now k as follows

(2q−1 + 1)kq−cEc = Eq/2 ,

that is

k =

(

Eq

Ec

1

2q + 2

)1/(q−c)

. (3.6)

From (3.5) and (3.6) it follows that

Eq ≤ 2q

∫

A(k)

(f − k)q dµ . (3.7)
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We bound the right hand side of (3.7) by means of Hölder’s inequality as

∫

A(k)

(f − k)q dµ ≤







∫

A(k)

(f − k)p dµ







q

p

|A(k)|1− q

p

≤
(

k−cEc

)1− q
p







∫

A(k)

(f − k)p dµ







q

p

. (3.8)

Notice that by our assumption (3.1) and from the choice (3.6) we infer

|A(k)| ≤ k−cEc = E(2q + 2)
c

q−c ≤ ϑ0(2q + 2)
c

q−c V (R) ≤
1

2
V (R) ,

if ϑ0 is selected suitably. Therefore we may appeal to the Faber-Krahn inequality
(1.13) to infer

∫

A(k)

(f − k)p dµ ≤ Λp(|A(k)|, R)−1

∫

A(k)

|∇ f |p dµ , (3.9)

and from (3.6)–(3.9) we get, also by exploiting again |A(k)| ≤ k−βEβ ,

Eq ≤ γE
p−q+N−1qp

p−c+N−1cp
c



ωp(E,R)

∫

BR

|∇f |p dµ





q−c

p−c+N−1cp

. (3.10)

The inequality (3.2) follows elementarily. �

4. Proof of Theorem 1.11.

Let us use in the following the notation

G1(t, R) = sup
0<τ<t

∫

BR(x0)

u(x, τ) dµ ,

G(t, R) = max
{

t−
N
β G1(t, R)

p
β , t−

1
2p+m−3

(

G1(t, R)F (R)
)

p

2p+m−3
}

.

Proposition 4.1. Let u be a uniformly continuous solution to (1.1)–(1.2) in M ×
(0, T ), and let t > 0 be such that

τ

Rp
u(x, τ)p+m−3 ≤ 1 , 0 < τ < t , x ∈ B(1+σ)R(x0) , (4.1)

where R ≥ 1, 0 < σ < 1, 0 < t < T are given. Then

u(x, τ) ≤ γG(t, (1 + σ)R) , t/2 < τ < t , x ∈ BR(x0) . (4.2)

Proof. Let for all n ≥ 0 and a1 > a2 > 0 to be selected

rn = R(1 + σ(1 − 2−n)) , r′
n = (rn + rn+1)/2 , tn = t(1 − σ(1 − 2−n))/2 ,

t′n = (tn + tn+1)/2 , r∞ = R(1 + σ) , t∞ = t(1 − σ)/2 , kn = a2 + (a1 − a2)2−n .
10



Then from Lemma 2.1 with R1 = rn, R2 = rn+1, and using also (4.1) we get for a
suitable b > 1 and for ϑ > 0 as in Lemma 2.1

sup
tn<τ<t

∫

Brn

(u− kn)ϑ+1
+ dµ+

∫∫

Q′
n

|∇(u− kn)
p+m+ϑ−2

p

+ |p dµ dτ

≤ C
bn

σp
t−1

∫∫

Qn+1

(u− kn+1)ϑ+1
+ dµ dτ , (4.3)

where we set Qn = Brn
× (tn, t), Q

′
n = Br′

n
× (t′n, t). We denote in this proof

by C a constant depending also on the ratio a1/(a1 − a2). Let ηn be a smooth
cutoff function such that ηn = 1 in Qn and ηn = 0 outside of Q′

n, |∇ ηn| ≤ γ2n/R,

0 ≤ ηnt ≤ γ2n/t. Define vn = (u− kn)
p+m+ϑ−2/p
+ ηn. Then from (4.3) one gets

sup
tn<τ<t

∫

Brn

vℓ
n dµ+

∫∫

Qn

|∇ vn|p dµ dτ ≤ Cbnt−1

∫∫

Qn+1

vℓ
n+1 dµ dτ , (4.4)

where ℓ = (1 +ϑ)p/(p+m+ϑ− 2). Next we use (3.2) as follows. First, we remark
that for all τ , n,

|supp vn(τ)| ≤ |B2R| ≤ ϑ0V (γR) ,

for a suitable γ > 1, owing to (1.14). Set

A(s, h, τ) = {x : u(x, τ) > h} ∩Bs ,

An(τ) = A(rn, kn, τ) , A∞(τ) = A((1 + σ)R, a2, τ) .

Thus we may apply (3.2) in BγR, and obtain, again from (1.14) and (3.3),

∫

Brn+1

vℓ
n+1 dµ dτ ≤ γ|An+1(τ)|1− ℓ

p
+ ℓ

N

× ω
(

|An+1(τ)|, R
)ℓ

(

∫

Brn+1

|∇ vn+1|p dµ
)

ℓ
p

.

Hence by means of Young’s inequality and integrating in time we find

∫∫

Qn+1

vℓ
n+1 dµ dτ ≤ γδ

p
ℓ

∫∫

Qn+1

|∇ vn+1|p dµ dτ

+ γδ− p

p−ℓ

t
∫

tn+1

[

|An+1(τ)|1+ pℓ

N(p−ℓ)ω
(

|An+1(τ)|, R
)

pℓ

p−ℓ

]

dτ

≤ γδ
p

ℓ

∫∫

Qn+1

|∇ vn+1|p dµ dτ

+ γδ− p
p−ℓ t sup

tn+1<τ<t

[

|An+1(τ)|1+ pℓ

N(p−ℓ)ω
(

|An+1(τ)|, R
)

pℓ
p−ℓ

]

.
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It is immediately seen that the inequality above implies for any fixed ε > 0, for a
suitable choice of δ > 0, that

Cbnt−1

∫∫

Qn+1

vℓ
n+1 dµ dτ ≤ ε

∫∫

Qn+1

|∇ vn+1|p dµ dτ

+ Cbn
1 ε

− ℓ
p−ℓ t−

ℓ
p−ℓ sup

tn+1<τ<t

[

|An+1(τ)|1+ pℓ

N(p−ℓ)ω
(

|An+1(τ)|, R
)

pℓ
p−ℓ

]

(4.5)

Thus (4.4) and (4.5) give us

sup
tn<τ<t

∫

Brn

vℓ
n dµ+

∫∫

Qn

|∇ vn|p dµ dτ ≤ ε

∫∫

Qn+1

|∇ vn+1|p dµ dτ

+ Cbn
1 ε

− ℓ
p−ℓ t−

ℓ
p−ℓ sup

t∞<τ<t

[

|A∞(τ)|1+ pℓ

N(p−ℓ)ω
(

|A∞(τ)|, R
)

pℓ

p−ℓ

]

.

On iterating this inequality for n → ∞, we find that actually

sup
t/2<τ<t

∫

BR

(u− a1)1+ϑ
+ dµ ≤ C(σ)t−

ℓ
p−ℓ ×

sup
t(1−σ)/2<τ<t

[

|A((1 + σ)R, a2, τ)|1+ pℓ

N(p−ℓ)ω
(

|A((1 + σ)R, a2, τ)|, R
)

pℓ
p−ℓ

]

. (4.6)

We conclude the proof by further iterating (4.6). To this end, define

τj =
t

2

j
∑

n=0

2−n−1 , Rj =
3

2
R−

1

2
R

j
∑

n=0

2−n−1 , hj = h(1 − 2−j−1) ,

for h > 0 to be chosen. Then from (4.6) one gets for h̄j = (hj + hj+1)/2,

yj+1 := sup
τj+1<τ<t

|A(Rj+1, τ, hj+1)|

≤ γγj
1h

−(1+ϑ) sup
τj+1<τ<t

∫

BRj+1

(u− h̄j)1+ϑ dµ

≤ γγj
1h

−(1+ϑ)t−
1+ϑ

p+m−3 y
1+

p(1+ϑ)

N(p+m−3)

j ω(yj, R)
p(1+ϑ)
p+m−3 .

Using Lemma 5.6 p.65 of [25], we conclude that yj → 0 as j → ∞ if

h−1t−
1

p+m−3 y
p

N(p+m−3)

0 ω(y0, R)
p

p+m−3 ≤ γ0 . (4.7)

Taking into account that
y0 ≤ γh−1G1(t, 2R) ,

we see that (4.7) holds if

γh−1t−
1

p+m−3
(

h−1G1(t, 2R)
)

p

N(p+m−3)ω(h−1G1(t, 2R), R)
p

p+m−3 = γ0 ,

whence we easily arrive at (4.2). �

Proposition 4.2. Under the assumptions of Proposition 4.1 we have

t
∫

0

∫

BR

|∇u|λuθ dµ dτ ≤ γG1(t, 2R)t1− λ
p G(t, 2R)s , (4.8)
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for 0 < λ < p, s = λ(3 −m)/p+ θ − 1 > 0, θ < m− 2 + (p− λ)(1 +N−1).

The proof of Proposition 4.2 relies on Proposition 4.1, following closely the proof
in the Euclidean case, see [1], [4], therefore we omit it.

Proof of Theorem 1.11. Define

t1 = sup

{

t > 0 : sup
0<τ<t

sup
R≥R

τ

Rp
‖u(τ)‖p+m−3

∞,B4R
≤ 1

}

.

Multiply both sides of (1.1) by a smooth cutoff function ζ(x) such that ζ = 1 in BR,
ζ = 0 outside of B2R and |∇ ζ| ≤ γ/R, R ≥ R. On applying (4.8) with λ = p− 1,
θ = m− 1 (which is admissible owing to p+m− 3 > 0), we have for t < t1

∫

BR

u(x, t) dµ ≤

∫

B2R

u0 dµ+
γ

R

t
∫

0

∫

B2R

|∇u|p−1um−1 dµ dτ

≤

∫

B2R

u0 dµ+
γ

R
G1(t, 4R)t

1
p G(t, 4R)

p+m−3
p .

Dividing this inequality by V (R)R
p

p+m−3 , we obtain, also by means of the doubling
property (1.14),

R− p

p+m−3V (R)−1

∫

BR

u(x, t) dµ ≤ γR− p

p+m−3V (R)−1

∫

B2R

u0 dµ

+ γ



 sup
R≥R

(4R)− p

p+m−3V (4R)−1

∫

B4R

u(x, t) dµ





t
1
p

R
G(t, 4R)

p+m−3
p . (4.9)

Define also for a δ > 0 to be chosen

t2 = sup

{

t > 0 : sup
R≥R

t
1
p

R
G(t, 8R)

p+m−3
p ≤ δ

}

.

Indeed t2 > 0 since t 7→ G(t, R)p+m−3 is increasing. Let t0 = min{t1, t2}. Then for
t < t0 we get from (4.9)

sup
R≥R

R− p
p+m−3V (R)−1

∫

BR

u(x, t) dµ ≤ γ|||u0|||R

+ γδ



 sup
0<τ<t

sup
R≥R

(4R)− p
p+m−3V (4R)−1

∫

B4R

u(x, t) dµ



 .

Hence for a sufficiently small δ we obtain

|||u(t)|||R ≤ γ|||u0|||R 0 < t < t0 . (4.10)

We claim that t0 = t2. Indeed, for R ≥ R, t < t0,

t

Rp
‖u(t)‖p+m−3

∞,B4R
≤ γ

t

Rp
G(t, 8R)p+m−3 ≤ γδp <

1

2
,
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for a suitable selection of δ. Next we bound below t0 = t2. We have

sup
R≥R

t
1
p

R
G(t, 8R)

p+m−3
p ≤ γ sup

R≥R

max

{

t
1

N(p+m−3)+p sup
0<τ<t





1

RN+ p

p+m−3

∫

B8R

u(x, τ) dµ





p+m−3
N(p+m−3)+p

,

t
1

2p+m−3 sup
0<τ<t





1

V (R)R
p

p+m−3

∫

B8R

u(x, τ) dµ





p+m−3
2p+m−3

}

.

(4.11)

Thus, invoking also (4.10), as well as the monotonic character of V (R)/R, which
follows from H.2, and implies V (R) ≤ γRN , R > 1, we arrive at

δ = sup
R≥R

t
1
p

0

R
G(t0, 4R)

p+m−3
p

≤ γmax

{

t
1

N(p+m−3)+p

0 |||u0|||
p+m−3

N(p+m−3)+p

R
, t

1
2p+m−3

0 |||u0|||
p+m−3

2p+m−3

R

}

.

On defining T0 = t0 we have indeed T0 = γ|||u0|||3−m−p

R
and (1.16). Finally, (4.2),

(4.10) and (4.11) yield

‖u(t)‖∞,BR
≤ γR

p

p+m−3 ×

max

{

t−
N

N(p+m−3)+p |||u0|||
p

N(p+m−3)+p

R
, t−

1
2p+m−3 |||u0|||

p

2p+m−3

R

}

,

whence (1.17).
In order to prove (1.18) we first note that if ‖u0‖1 < ∞, then T0 can be chosen

as large as needed by choosing a large enough R and by invoking conservation of
mass. Therefore (1.18) follows from (4.2) and again by conservation of mass. �

5. Proof of Theorem 1.12.

Denote for the sake of brevity

P (t) = Z
(

‖u0‖m+p−3
1,M t

)

, ‖u0‖m+p−3
1,M t ≥ 1 ,

P (t) = Z(1) , ‖u0‖m+p−3
1,M t < 1 .

First we use the local estimates which we already proved to obtain a bound for
the moment of u(t) in terms of the norm ‖u(t)‖∞.

Lemma 5.1. Assume I0 < ∞. Then for all t > 0

I(t) ≤ γI0 + γF (H(t))‖u0‖1, , (5.1)

where for all ϑ ∈ (0, 1/p)

H(t) = t
1
p

−ϑ





t
∫

0

τ
ϑp

p−1 −1‖u(τ)‖
p+m−3

p−1
∞ dτ





p−1
p

.
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Proof. Let us fixR ≥ 1. We denote here d(x) = dist(x, x0). Let η = ζp(d(x))F (d(x))
where ζ(s), s ≥ 0 is a smooth function such that ζ(s) = 1 for s ≥ 2R, ζ(s) = 0 for
0 ≤ s ≤ R, 0 ≤ ζ′ ≤ γ/R, 0 ≤ ζ ≤ 1. We also remark that owing to (1.15)

|∇F (d(x))| ≤ F ′(d(x)) ≤
1

V (d(x))
, d(x) > 1 .

Multiplying against η both sides of (1.1) and integrating by parts, we get

∫

M\BR

ζpFu(x, t) dµ ≤ I0 +

t
∫

0

∫

M\BR

um−1|∇u|p−1 1

V (d(x))
ζp dµ dτ

+ p

t
∫

0

∫

B2R\BR

um−1|∇u|p−1F (d(x))|∇ ζ|ζp−1 dµ dτ

≤ I0 +
γ

V (R)

t
∫

0

∫

M

um−1|∇u|p−1 dµ dτ .

(5.2)

Next we estimate the second term on the right-hand side of (5.2) as follows. Let
R ≥ 1 and ψ be a standard cutoff function in B2R, such that ψ = 1 in BR. Then
by Hölder’s inequality one gets

J :=

t
∫

0

∫

B
2R

ψpum−1|∇u|p−1 dµ dτ ≤ I
p−1

p

1 I
1
p

2 , (5.3)

where

I1 =

t
∫

0

∫

B
2R

τ
ϑp

p−1ψpu
(m−1)p

p−1 − 1
p−1 |∇u|p dµ dτ ,

I2 =

t
∫

0

∫

B
2R

τ−ϑpψpu dµ dτ ≤ γt1−ϑp‖u0‖1 .

To estimate I1 we choose in the equation as a test function τ
ϑp

p−1u
p+m−3

p−1 ψp. Then
we get by integration by parts and Young’s inequality

I1 ≤
γ

R
p

t
∫

0

∫

B
2R

τ
ϑp

p−1up+m−2+ p+m−3
p−1 dµ dτ

+ γ

t
∫

0

∫

B
2R

τ
ϑp

p−1 −1u1+ p+m−3
p−1 dµ dτ = I3 + I4 .

Since we are going to let R → ∞ we may assume, for any fixed τ > 0, that in (1.18)
[written for R = 2R, t = τ ] the second term on the right hand side is the greater
one. Assume R ≥ γP (τ), where γ is such that (1.18) implies

τ(2R)−p‖u(τ)‖p+m−3
∞,B

2R

≤ 1 .
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Then the integrand in I3 is majorised by the one in I4 (at time τ). On recalling that
we are working with smooth approximating solutions, by invoking Fatou’s lemma
it is easily seen that in the limit R → ∞ equation (5.3) gives

t
∫

0

∫

M

um−1|∇u|p−1 dµ dτ = lim
R→∞

J ≤

γ‖u0‖1t
1
p

−ϑ





t
∫

0

τϑ p

p−1 −1‖u(τ)‖
p+m−3

p−1
∞ dτ





p−1
p

= γ‖u0‖1H(t) .

Therefore we have, by using also (5.2),

I(t) =

∫

BR

F (d(x))u(x, t) dµ+

∫

M\BR

F (d(x))u(x, t) dµ

≤ F (R)‖u0‖1 + γI0 +
γ

V (R)
H(t)‖u0‖1 .

If H(t) ≥ 1 we may select above R = H(t) to obtain (5.1). If H(t) < 1 we choose
R = 1 to get the same result. �

Finally we absorb the L∞ norm appearing in the right hand side of (5.1) with
the help of two technical lemmas proven in [2], which we reproduce in our notation
for the reader’s convenience.

Lemma 5.2. [2] If A, B > 0, Γ > 1 satisfy

B ≤ AF (Γ )p/(2p+m−3) ,

then for all ε > 0 there exists cε > 1 such that for all σ > 0

σB(p+m−3)/p ≤ εΓ + cεZ1

(

(σA
p+m−3

p )2p+m−3
)

,

where Z1(s) = Z
(

max(s, 1)
)

, s > 0.

Lemma 5.3. [2] Let g ∈ C((0,∞)), g ≥ 0 satisfy

g(t) ≤ U(t) + εt−σ
(

t
∫

0

τσq−1g(τ)q dτ
)1/q

, t > 0 ,

where ε, σ, q > 0 are given, and U ∈ C((0,∞)), U > 0. Assume also that, for t > 0
and a given g0 ∈ C((0,∞)), we have g(t) ≤ g0(t), and that for a given 0 < δ < σ,

tδg0(t), tδU(t) are non decreasing in t > 0. Then, if ε < η = (σq − δq)1/q, we have

g(t) ≤ (1 − ε/η)−1U(t) , t > 0 .

Proof of Theorem 1.12. Proceeding as in the proof of Proposition 4.1 one can show
that

‖u(t)‖∞,AR
≤ γmax

{

t−
N
β

(

sup
0<τ<t

∫

A′
R

u(x, τ) dµ
)

p
β

,

t−
1

2p+m−3

(

sup
0<τ<t

∫

A′
R

u(x, τ) dµ
)

p
2p+m−3

F (R)
p

2p+m−3

}

, (5.4)
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for all R ≥ γP (t) where AR = B2R\BR and A′
R = B4R\BR/2. Then the last term

in (5.4) can be bounded in terms of I(t), which in turn can be estimated as in (5.1).
Thus we have

‖u(t)‖∞ ≤

γ̃max
{

U(t) , t−1/(2p+m−3)‖u0‖
p/(2p+m−3)
1 F (H(t))p/(2p+m−3)

}

. (5.5)

For the sake of logical clarity, let us fix from now ε, ϑ, δ so that

ε =
1

4

( (ϑ− δ)p

p− 1

)

p−1
p

,
N(p+m− 3)

βp
< δ < ϑ <

1

p
.

Let C = c̃ε/ε > 1, where for cε as in Lemma 5.2, and for γ̃ as in (5.5),

c̃ε = γ1cε , γ1 = γ̃(2p+m−3)(p+m−3)/p > 1 .

If H(t) > CP (t), so that H(t) > 1, we may apply Lemma 5.2, which is a functional
version of Young’s inequality, to get from (5.5)

t1/p‖u(t)‖(p+m−3)/p
∞ ≤ max

{

εH(t) + c̃εP (t) , γU(t)(p+m−3)/pt1/p
}

. (5.6)

Indeed, we select to this end in Lemma 5.2

Γ = H(t) B = ‖u(t)‖∞ , σ = t1/p , A = γ̃t−1/(2p+m−3)‖u0‖
p/(2p+m−3)
1 ;

here we also use the fact

Z(γ1t‖u0‖p+m−3
1 ) ≤ γ1Z(t‖u0‖p+m−3

1 ) ,

which follows from the definition of Z. Actually (5.6) implies

‖u(t)‖(p+m−3)/p
∞ ≤ 2εt−1/pH(t) + γU(t)(p+m−3)/p , (5.7)

when we use our assumption H(t) > CP (t) again. However, (5.7) is in force even if
H(t) ≤ CP (t), as it follows from (5.1), (5.5), and the definitions of U(t) and P (t),
perhaps by an inessential change of the constant γ appearing in (5.7). Thus (5.7)
is in force for all t > 0.

Notice that (5.7) is in practice an integral inequality; if we knew the monotonicity
in t of tδ‖u(t)‖∞, for a suitable δ > 0, the statement would follow readily. In the
general case, our choice of ε enables us to apply Lemma 5.3 to circumvent the
technical difficulty posed by the lack of monotonicity and prove (1.19). Indeed, we
may select in Lemma 5.3

g(t) = ‖u(t)‖(p+m−3)/p
∞ , U(t) = γU(t)(p+m−3)/p ,

σ = ϑ , q = p/(p− 1) , g0(t) = ‖u0‖∞ ,

and ε, δ and ϑ as above. �
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