We consider the semilinear Lane–Emden problem (Ep) -Delta u = |u|^(p−1) u in Omega u =0 on ∂Omega where p > 1 and Omega is a smooth bounded symmetric domain of R^2. We show that for families (u_p) of sign-changing symmetric solutions of (Ep) an upper bound on their Morse index implies concentration of the positive and negative part, u^±_p , at the same point, as p →+∞. Then, an asymptotic analysis of u^+_p and u^−_p shows that the asymptotic profile of (u_p), as p →+∞, is that of a tower of two different bubbles.

Morse index and sign-changing bubble towers for Lane–Emden problems / DE MARCHIS, Francesca; Ianni, Isabella; Pacella, Filomena. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 195:...(2016), pp. 357-369. [10.1007/s10231-014-0467-6]

Morse index and sign-changing bubble towers for Lane–Emden problems

DE MARCHIS, FRANCESCA;Isabella Ianni;PACELLA, Filomena
2016

Abstract

We consider the semilinear Lane–Emden problem (Ep) -Delta u = |u|^(p−1) u in Omega u =0 on ∂Omega where p > 1 and Omega is a smooth bounded symmetric domain of R^2. We show that for families (u_p) of sign-changing symmetric solutions of (Ep) an upper bound on their Morse index implies concentration of the positive and negative part, u^±_p , at the same point, as p →+∞. Then, an asymptotic analysis of u^+_p and u^−_p shows that the asymptotic profile of (u_p), as p →+∞, is that of a tower of two different bubbles.
2016
Superlinear elliptic boundary value problem; sign-changing solution; asymptotic analysis; Bubble towers; Morse index
01 Pubblicazione su rivista::01a Articolo in rivista
Morse index and sign-changing bubble towers for Lane–Emden problems / DE MARCHIS, Francesca; Ianni, Isabella; Pacella, Filomena. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 195:...(2016), pp. 357-369. [10.1007/s10231-014-0467-6]
File allegati a questo prodotto
File Dimensione Formato  
DeMarchis_Morse-index_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 228.8 kB
Formato Adobe PDF
228.8 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/783996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact