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Abstract We consider the semilinear Lane–Emden problem{−�u = |u|p−1u in �

u = 0 on ∂�
(Ep)

where p > 1 and � is a smooth bounded symmetric domain of R
2. We show that for families

(u p) of sign-changing symmetric solutions of (Ep) an upper bound on their Morse index
implies concentration of the positive and negative part, u±

p , at the same point, as p → +∞.
Then, an asymptotic analysis of u+

p and u−
p shows that the asymptotic profile of (u p), as

p → +∞, is that of a tower of two different bubbles.
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1 Introduction

Let � be a smooth bounded domain of R
2 and consider the Lane–Emden problem{−�u = |u|p−1u in �

u = 0 on ∂�
(1.1)

where p > 1.
The aim of the paper is to show, under some symmetry assumption on �, a relation between

the Morse index of sign-changing symmetric solutions of (1.1) and their asymptotic profile,
as p → +∞.

In order to state precisely our result, we need to introduce some notations. For a given
family (u p) of sign-changing solutions of (1.1), we denote by

• u+
p = max(0, u p), u−

p = − min(0, u p)

• N±
p ⊂ � the positive/negative nodal domain of u p , i.e., N±

p = {x ∈ � : u p(x) ≷ 0}
• N L p the nodal line of u p , i.e., N L p = {x ∈ � : u p(x) = 0}
• x±

p the maximum/minimum point in � of u p , i.e., u p(x±
p ) = ±‖u±

p ‖∞
• μ±

p := 1√
p|u p(x±

p )|p−1

• �̃±
p := �−x±

p

μ±
p

= {x ∈ R
2 : x±

p + μ±
p x ∈ �}.

Recalling that the Morse index m(v) of a solution v of a problem of type (1.1) is the
number of the negative eigenvalues of the linearized operator at v, we state our main result:

Theorem 1.1 Let � ⊂ R
2 be a simply connected bounded smooth domain containing the

origin O and invariant under the action of a cyclic group G of rotations about the origin
with order |G| ≥ 2. Let (u p) be a family of sign-changing G-symmetric solutions of (1.1)
with two nodal regions such that

p
∫

�

|∇u p|2dx
p→+∞−→ β, for some β ∈ R, (1.2)

and

m(u p) < |G| + 1. (1.3)

Then, assuming w.l.o.g. that ‖u p‖∞ = ‖u+
p ‖∞, we have

(i) |x±
p | → O as p → +∞,

(ii) N L p shrinks to the origin as p → +∞,

(iii) the rescaled function v+
p (x) := p

u p(x+
p +μ+

p x)−u p(x+
p )

u p(x+
p )

defined in �̃+
p converges (up to a

subsequence) to the regular solution U of{−�U = eU in R
2∫

R2 eU dx = 8π
(1.4)

with U (0) = 0, in C1
loc(R

2),

(iv) the rescaled function v−
p (x) := p

u p(x−
p +μ−

p x)−u p(x−
p )

u p(x−
p )

defined in �̃−
p converges in

C1
loc(R

2 \ {x∞}) (up to a subsequence) to a singular solution V of{−�V = eV + Hδx∞ in R
2∫

R2 eV dx < ∞ (1.5)
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where H is a negative suitable constant and δx∞ is the Dirac measure centered at

x∞ = − lim p→+∞
x−

p

μ−
p

	= 0,

(v)
√

pu p → 0 in C1
loc(R

2 \ {0}) as p → +∞.

The assertions of the above theorem show that both u+
p and u−

p concentrate at the same
point which is the origin and, after suitable rescalings, they have the limit profile of a regular
and a singular solution of the Liouville equation in the plane. So the limit profile of u p , as
p → +∞, is that of a tower of two different bubbles.

Remark 1.2 According to the classification in [11], if H /∈ −4πN, the solutions of (1.5) are
radial with respect to x∞, while, if H ∈ −4πN, they can be either radial with respect to x∞
or invariant under the action of a cyclic group of rotations of order H

4π
+ 1 (which in our case

should be at least |G|) about x∞. We refer to Proposition 3.5 for further details.

The first results for problem (1.1) about the existence of sign-changing solutions whose
positive and negative part concentrate at the same point have been obtained in [10] for nodal
radial solutions in the ball and in [8] for nodal symmetric solutions similar to those considered
in Theorem 1.1. As compared to [8], the main difference is that there a relation between the
asymptotic energy β [see (1.2)] of the solutions and the order of the group G was exploited,
while here we use the bound (1.3) on the Morse index.

We believe that this connection between the Morse index and the limit profile of the
solutions is the real novelty of our result. It shows once again a deep relation between the
information obtained by the linearization and the qualitative properties of the solutions.

Our assumption (1.3) also allows to weaken the hypothesis on the order of the symmetry
group G which, in [8], was assumed to be: |G| ≥ 4e. On the other side, it should be said
that, generally, energy conditions are easier to be checked than Morse index bounds. Indeed,
in [7] solutions satisfying the energy bound stated in [8] have been proved to exist. Another
difference with the result in [8] is that here for the asymptotic analysis of u−

p we are not able
to exclude the nonradiality of v−

p .
Let us observe that the assumptions of Theorem 1.1 are reasonable since the G-symmetric

solutions found recently in [7] in the case |G| ≥ 4, have two nodal regions, satisfy (1.2) and
we conjecture, supported by numerical evidence and asymptotic computations, that their
Morse index should be 4. Let us recall that for some symmetric sign-changing solutions a
lower bound on their Morse index can be obtained, as proved in [1]. This shows in particular
that the Morse index of sign-changing radial solutions in a ball is at least 4 and, we expect
that in the case of least energy radial sign-changing solutions in a ball, their Morse index is
exactly 4, as we are going to prove in a paper in preparation.

The Theorem 1.1 will follow from a slightly more general result where the assumption
(1.3) is substituted by the condition

max{m(u+
p ), m(u−

p )} < |G|. (1.6)

Indeed, since the Morse index m(u p) of a solution u p of (1.1) is always larger or equal to
m(u±

p ) + 1, it is obvious that (1.3) implies (1.6).

Theorem 1.3 Let � ⊂ R
2 be a bounded simply connected smooth domain containing the

origin O and invariant under the action of a cyclic group G of rotations about the origin
with |G| ≥ 2.

If (u p) is a family of sign-changing solutions of (1.1) with two nodal regions satisfying
(1.2) and (1.6) then the assertions (i)–(v) hold.
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The proof of Theorem 1.3 (and hence of Theorem 1.1) is based on several results proved
in [8]. Let us point out that a crucial initial step is to show that the solutions considered have
the property that their nodal line neither touches the boundary of �, nor passes through the
origin, i.e., for u p holds:

N L p ∩ ∂� = ∅ and O 	∈ N L p. (1.7)

Since the solution u p considered in the above theorem has two nodal regions, (1.7) is a
consequence of the following general result whose proof is exactly the same as that of [7,
Lemma 4.1] and [7, Lemma 4.3] (written there for |G| ≥ 4).

Proposition 1.4 If G is a cyclic group of rotations about the origin with |G| ≥ 2 then any
G-symmetric nodal solution u p of (1.1) such that �(u p) ≤ |G| satisfies (1.7), where �(u p)

is the number of nodal domains of u p.

We believe that (1.7) is the crucial qualitative property of the solutions which yields the
concentration of u+

p and u−
p at the same point.

Moreover, let us observe that for sign-changing solutions with any number of nodal regions
in any G-symmetric domain � the condition (1.3) implies the properties in (1.7). Indeed, we
know (cfr. [2]) that

�(u p) ≤ m(u p).

hence (1.3) yields

�(u p) ≤ m(u p) ≤ |G|, (1.8)

so that again by Proposition 1.4 we get (1.7).
The outline of the paper is as follows. In Sect. 2, we recall or prove some results in general

bounded, not necessarily symmetric domains. In Sect. 3, we give the proof of Theorem 1.3 as
consequence of other results concerning the asymptotic analysis of the negative parts (u−

p )

in G-symmetric domains.

2 Preliminary results in general bounded domains

In order to prove Theorem 1.3, we follow the scheme of the proof of [8, Theorem 1.2],
showing that all the steps can be obtained under the new assumptions of this paper.

We start introducing some notations and recalling some results obtained in [8] on the
asymptotic behavior of a family (u p) of solutions of (1.1), in a general smooth bounded
domain �, satisfying the energy condition (1.2).

Given a family (u p) of solutions of (1.1) and assuming that there exist n ∈ N\{0} families
of points (xi,p), i = 1, . . . , n in � such that

p|u p(xi,p)|p−1 → +∞ as p → +∞, (2.1)

we define the parameters μi,p by

μ−2
i,p = p|u p(xi,p)|p−1, for all i = 1, . . . , n. (2.2)

By (2.1) it is clear that μi,p → 0 as p → +∞ and that

∀ε > 0 ∃ pi,ε such that |u p(xi,p)| ≥ 1 − ε, ∀p ≥ pi,ε . (2.3)
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Then, we define the concentration set

S =
{

lim
p→+∞ xi,p, i = 1, . . . , n

}
⊂ �̄ (2.4)

and the function

Rn,p(x) = min
i=1,...,n

|x − xi,p|, ∀x ∈ �. (2.5)

Finally, we introduce the following properties:

(Pn
1 ) For any i, j ∈ {1, . . . , n}, i 	= j ,

lim
p→+∞

|xi,p − x j,p|
μi,p

= +∞.

(Pn
2 ) For any i = 1, . . . , n,

vi,p(x) := p

u p(xi,p)
(u p(xi,p + μi,px) − u p(xi,p)) −→ U (x)

in C1
loc(R

2) as p → +∞, where

U (x) = log

(
1

1 + 1
8 |x |2

)2

(2.6)

is the solution of −�U = eU in R
2, U ≤ 0, U (0) = 0 and

∫
R2 eU = 8π .

(Pn
3 ) There exists C > 0 such that

pRn,p(x)2|u p(x)|p−1 ≤ C

for all p sufficiently large and all x ∈ �.

The following results have been obtained in [8].

Lemma 2.1 Let (u p) be a family of solutions to (1.1) satisfying (1.2). Then,

(i) If u p changes sign, then ‖u±
p ‖p−1

L∞(�) ≥ λ1 where λ1 := λ1(�) is the first eigenvalue of

the operator −� in H1
0 (�). In particular for the points x±

p , where the maximum and
the minimum are achieved, the analogous of (2.1) and (2.3) hold.

(i i) If, for n ∈ N\ {0}, the properties (Pn
1 ) and (Pn

2 ) hold for families (xi,p)i=1,...,n of points
satisfying (2.1), then

p
∫

�

|∇u p|2 dx ≥ 8π

n∑
i=1

α2
i + op(1) as p → +∞,

where αi := lim inf p→+∞ |u p(xi,p)|.
Proof See [8, Lemma 2.1]. ��
Proposition 2.2 Let (u p) be a family of solutions to (1.1) and assume that (1.2) holds. Then,
there exist k ∈ N \ {0} and k families of points (xi,p) in �, i = 1, . . . , k such that, after
passing to a sequence, (2.1), (Pk

1 ), (Pk
2 ), and (Pk

3 ) hold. Moreover, given any family of points
xk+1,p, it is impossible to extract a new sequence from the previous one such that (Pk+1

1 ),
(Pk+1

2 ), and (Pk+1
3 ) hold with the sequences (xi,p), i = 1, . . . , k + 1. At last, we have
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√
pu p → 0 in C1

loc(�̄ \ S) as p → +∞. (2.7)

Proof See [8, Proposition 2.2]. ��
Proposition 2.2 was inspired by the paper [9] where positive solutions of semilinear elliptic

problems with critical exponential nonlinearities in 2-dimension were studied. Its proof is
based on an induction argument, namely one first proves that (P1

1 ), (P1
2 ) hold for points x1,p

where u p achieves ‖u p‖∞ (actually (P1
1 ) is trivially verified), and then one shows that if

(Pn
1 ), (Pn

2 ) are satisfied for some n ∈ N\{0} then either (Pn
3 ) holds true or there exists a point

xn+1,p , such that the (n + 1)-tuple x1,p, . . . , xn+1,p fulfills (Pn+1
1 ), (Pn+1

2 ). The procedure
necessarily stops by virtue of Lemma 2.1 and assumption (1.2).

Moreover, one can easily derive the following corollary.

Corollary 2.3 Under the assumptions of Proposition 2.2 if the solutions u p are sign-
changing it follows that

dist (xi,p, ∂�)

μi,p

p→+∞→ +∞ and
dist (xi,p, N L p)

μi,p

p→+∞→ +∞ for all i ∈ {1, . . . , k}

where, as in Sect. 1, N L p denotes the nodal line of u p.
As a consequence, for any i ∈ {1, . . . , k}, letting Ni,p ⊂ � be the nodal domain of u p

containing xi,p and setting ui
p := u pχNi,p (χA is the characteristic function of the set A),

then the scaling of ui
p around xi,p:

zi,p(x) := p

u p(xi,p)
(ui

p(xi,p + μi,px) − u p(xi,p)), (2.8)

defined on Ñi,p := Ni,p−xi,p
μi,p

, converges to U in C1
loc(R

2), where U is the function defined in
(2.6).

Proof See [8, Corollary2.4]. ��
We point out that, since we are assuming without loss of generality that ‖u p‖∞ = ‖u+

p ‖∞,
we can take x+

p as the point x1,p so that directly from the proof of Proposition 2.2 we get the
following result for the rescaling about x+

p .

Proposition 2.4 Let (u p) be a family of solutions to (1.1) satisfying (1.2). Then, the rescaled
functions

v+
p (x) := p

u p(x+
p )

(u p(x+
p + μ+

p x) − u p(x+
p )) (2.9)

defined on �̃+
p (see Sect. 1 for the definition) converge to U in C1

loc(R
2), where U is the

function introduced in (2.6).

Now, we prove a general proposition on the sign of the first eigenvalue of the linearized
operators at u±

p :

L±
p := −� − p|u±

p |p−1,

in the space H1
0 (N±

p ), respectively. Let us denote by λ±
j , j = 1, 2, . . ., respectively, their

eigenvalues with homogeneous Dirichlet boundary conditions, and let m(u±
p ) be the Morse

index of u±
p in N±

p , namely λ±
j < 0, for j = 1, . . . , m(u±

p ) and λ±
m(u±

p )+1
≥ 0. Moreover,

for a domain B ⊆ N±
p , we denote by λ±

j (B), j = 1, 2, . . . the Dirichlet eigenvalues of L±
p

in B.
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Proposition 2.5 Let (u p) be a family of solutions to (1.1) satisfying (1.2), and let (xi,p) ⊂ �,
i = 1, . . . , k be families of points as in Proposition 2.2. Then, there exists r̄ > 0 such that

λ+
1

(
Br̄μi,p (xi,p)

)
< 0 for largep, if (xi,p) ⊂ N+

p

λ−
1

(
Br̄μi,p (xi,p)

)
< 0 for large p, if (xi,p) ⊂ N−

p

where Br̄μi,p (xi,p) are the balls centered in xi,p of radius r̄μi,p.

Proof Without loss of generality, by (2.1), we may assume that either (xi,p) ⊂ N+
p or

(xi,p) ⊂ N−
p , for p large. We give the proof in the case (xi,p) ⊂ N+

p , the other case being
similar.

Let us consider the linear operators

˜L+
i,p := −� − |u+

p (μi,px + xi,p)|p−1

|u p(xi,p)|p−1

in the space H1
0 (Ñ+

i,p) where Ñ+
i,p := {x ∈ R

2 : xi,p + μi,px ∈ N+
p }.

Since for any function v ∈ H1
0 (Ñ+

p ) we have that the rescaled function w(x) = v(μi,px +
xi,p) belongs to H1

0 (Ñ+
i,p), we get that the Dirichlet eigenvalues λ̃

i,+
j , j = 1, 2, . . . of ˜L+

i,p
satisfy

λ̃
i,+
j = λ+

j
1

p|u p(xi,p)|p−1 , j = 1, 2, . . . .

Moreover, for any subset B ⊆ N+
p , letting B̃i,p := {x ∈ R

2 : μi,px + xi,p ∈ B} ⊆ Ñ+
i,p ,

then the Dirichlet eigenvalues of ˜L+
i,p in B̃i,p are

λ̃ j
i,+

(B̃i,p) := λ+
j (B)

1

p|u p(xi,p)|p−1 , j = 1, 2, . . . .

As a consequence, to prove the thesis is equivalent to show that there exists r̄ > 0 such that

λ̃1
i,+

(Br̄ (0)) < 0 for large p, (2.10)

where Br̄ (0) is the ball centered in 0 and radius r̄ . To prove (2.10), we consider the functions

wi,p := x · ∇zi,p + 2

p − 1
zi,p + 2p

p − 1
,

where zi,p is the function defined in (2.8). We have that wi,p satisfies ˜L+
i,p(wi,p) = 0

and wi,p(0) → 2. Moreover, as zi,p(x) → U (x) = log

(
1

(1+ 1
8 |x |2)2

)
, we also get that

wi,p(x) → − 4r2

8+r2 + 2, for |x | = r , and so, for large r , wi,p(x) → α < 0 for x ∈ ∂ Br (0).
For such r ’s, let us define Ai,p := {x ∈ Br (0) : wi,p > 0}, and let us define w̄i,p = wi,p in
Ai,p and w̄i,p ≡ 0 in Br (0) \ Ai,p .

Then, w̄i,p ∈ H1
0 (Br (0)) and for r̄ > r

λ̃1
i,+

(Br̄ (0)) < λ̃1
i,+

(Br (0)) ≤
∫

Br (0)

|∇w̄i,p|2 −
∫

Br (0)

|u+
p (μi,px + xi,p)|p−1

|u p(xi,p)|p−1 w̄2
i,p = 0,

which proves the assertion. ��
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3 Results for symmetric domains and proof of Theorem 1.3

All we have proved in the previous section holds regardless the symmetry of �. In the sequel
using the symmetry and the assumption on the Morse index (1.6), we will derive more specific
and precise results.

Thus, let � ⊂ R
2 be a simply connected bounded smooth domain containing the origin

and invariant under the action of a cyclic group G of rotations about the origin with |G| ≥ 2.
Let us consider a family (u p) of sign-changing G-symmetric solutions as in the statement
of Theorem 1.3. We apply Proposition 2.2 which gives a maximal number k of families of
points (xi,p), i = 1, . . . , k, in � such that, up to a sequence, (Pk

1 ), (Pk
2 ) and (Pk

3 ) hold for
our solutions. We start with the following result.

Proposition 3.1 Let � be as in Theorem 1.3, and let (u p) be a family of sign-changing
G-symmetric solutions of (1.1) satisfying (1.2). Let (xi,p) ⊂ �, i = 1, . . . , k be a family of
points as in Proposition 2.2. If (xi,p) ⊂ N+

p , for p large, then assume that m(u+
p ) < |G|

otherwise, if (xi,p) ⊂ N−
p , for p large, then assume that m(u−

p ) < |G|. Then,

|xi,p|
μi,p

is bounded.

In particular |xi,p| → 0.

Proof We prove the assertion in the case (xi,p) ⊂ N+
p , the other case being similar. Moreover,

in order to simplify the notation, we drop the dependence on i namely we set x p := xi,p

and μp := μi,p . Let h := |G| and assume by contradiction that there exists a sequence

pn → +∞ such that |x pn |
μpn

→ +∞. Then, since the h distinct points g j x pn (where the (g j )’s
are the element of G), j = 0, . . . , h − 1, are the vertex of a regular polygon centered in O ,
we have that dn := |g j x pn − g j+1x pn | = 2d̃n sin π

h , where d̃n := |g j x pn |, j = 0, . . . , h − 1.

Hence, we also have that dn
μpn

→ +∞.
Let

Rn := min

{
dn

3
,

d(x pn , ∂�)

2
,

d(x pn , N L pn )

2

}
, (3.1)

then by construction

BRn (g
j x pn ) ⊆ N+

pn
for j = 0, . . . , h − 1,

BRn (g
j x pn ) ∩ BRn (g

l x pn ) = ∅, for j 	= l
(3.2)

and by virtue of Corollary 2.3

Rn

μpn

→ +∞. (3.3)

By Proposition 2.5 it follows that λ+
1

(
Br̄μpn

(x pn )
)

< 0 for large n. So by the G-symmetry
of u+

pn
and the invariance of the laplacian by orthogonal transformations, it is easy to see that

λ+
1 (Br̄μpn

(g j x pn )) < 0, for each j = 0, . . . , h−1. Hence, by the variational characterization
of the first eigenvalue, there exists ϕ j ∈ H1

0 (Br̄μpn
(g j x pn )), such that

R(v) :=
∫
N+

pn

[
|∇v|2 − p|u+

p |p−1v2
]

‖v‖2
2

≥ R(ϕ j ) = λ+
1 (Br̄μpn

(g j x pn )) < 0,

for any v ∈ H1
0 (Br̄μpn

(g j x pn )), v 	= 0, j = 0, . . . , h − 1.
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Let W := span{ϕ0, . . . , ϕh−1}, then by (3.3) it follows that for p large Br̄μpn
(g j x pn ) ⊆

BRn (g
j x pn ), hence W ⊂ H1

0 (N+
pn

) and also, by (3.2), dim W = h and R(v) ≤∑h−1
j=0 R(ϕ j ) < 0 for any v ∈ W .

Hence, using the variational characterization of the h-th eigenvalue, it follows that λ+
h < 0,

namely m(u+
pn

) ≥ h, a contradiction. ��
Now, we state several results which can be obtained exactly in the same way as for

analogous results in [8]. They will be important steps for the proof of Theorem 1.3.

Proposition 3.2 Under the same assumptions as in Theorem 1.3, we have:

(i) N L p ∩ ∂� = ∅ and O 	∈ N L p.

(ii) O ∈ N+
p for p large.

(iii) xi,p ∈ N+
p for p large and i = 1, . . . , k.

(iv) The maximal number k of families of points (xi,p), i = 1, . . . , k, for which (Pk
1 ), (Pk

2 )

and (Pk
3 ) hold is 1.

(v) There exists C > 0 such that for any family (x p) ⊂ �, one has

|x p|
μ(x p)

≤ C (3.4)

for p large, where μ(x p) is defined by (μ(x p))
−2 = p|u p(x p)|p−1.

Proof As already observed in the Introduction, (i) is a consequence of Proposition 1.4 which
applies to any G-symmetric solution having two nodal domains. Once property (i) is proved
the (ii)–(v) follow as in [8, Corollary 3.5, Proposition 3.6 and Corollary 3.7]. ��

By Lemma 2.1 and Proposition 3.2 for the minimum points x−
p , we then have

|x−
p |

μ−
p

≤ C, (3.5)

so there are two possibilities: either
|x−

p |
μ−

p
→ � > 0 or

|x−
p |

μ−
p

→ 0 as p → +∞, up to

subsequences. A crucial point of the proof is to exclude the latter case.

Proposition 3.3 There exists � > 0 such that, up to a subsequence,

|x−
p |

μ−
p

→ � as p → +∞.

Let us define

x∞ := − lim
p→+∞

x−
p

μ−
p

, |x∞| = � > 0. (3.6)

Proof See [8, Proposition 4.2]. ��
Next, even if we have no information on the geometry of the nodal line we are able to show
that the nodal line shrinks to the origin faster than μ−

p as p → +∞.

Proposition 3.4 We have

max
yp∈N L p

|yp|
μ−

p
→ 0 as p → +∞.
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Proof See [8, Proposition 4.3] ��
These two last propositions allow to characterize the behavior of the rescaled solutions about
x−

p .

Proposition 3.5 The scaling of u p around x−
p

v−
p (x) := p

u p(x−
p )

(
u p(μ

−
p x + x−

p ) − u p(x−
p )

)
(3.7)

defined on �̃−
p converges (passing to a subsequence) in C1

loc(R
2 \ {x∞}) to the function

V (x − x∞), where V is a singular solution of{−�V = eV + Hδ0 in R
2∫

R2 eV dx < ∞.
(3.8)

for some negative H, and x∞ is the point defined in (3.6). More precisely, letting � be as in
(3.6), then:

• either V is the radial singular solution of (3.8), for some negative H = H(�),

V = Vrad,�(x) := log

(
2α2βα|x |α−2

(βα + |x |α)2

)
x ∈ R

2 \ {0},

where α = √
2�2 + 4 and β = �

(
α+2
α−2

)1/α

,

• or V is the (η + 1)-symmetric solution of (3.8), for H = −4πη, which in complex
notations can be expressed as follows

V = Vη,�(z) := log

(
8(η + 1)2λ|z|2η

(1 + λ|zη+1 − c|2)2

)
z ∈ C \ {0},

where (η+1) is an integer multiple of |G|, λ = (�2+2η2)2

8(η+1)2�2η+4 , c = (−x∞)η+1(1− 4η(η+1)

�2+2η2 ).

Proof Let us consider the translations of (3.7):

s−
p (x) := v−

p

(
x − x−

p

μ−
p

)
= p

u p(x−
p )

(u p(μ
−
p x) − u p(x−

p )), x ∈ �

μ−
p

which solve ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�s−
p (x) =

∣∣∣∣1 + s−
p (x)

p

∣∣∣∣
p−1 (

1 + s−
p (x)

p

)
x ∈ �

μ−
p

s−
p (

x−
p

μ−
p
) = 0

s−
p (x) ≤ 0 x ∈ �

μ−
p
.

Observe that �

μ−
p

→ R
2 as p → +∞.

We claim that for any fixed r > 0, | − �s−
p | is bounded in �

μ−
p

\ Br (0).

Indeed Proposition 3.4 implies that if x ∈ N+
p

μ−
p

, then |x | ≤
max

z p∈N L p
|z p |

μ−
p

< r, for p large, hence

(
�

μ−
p

\ Br (0)

)
⊂ N−

p

μ−
p

for p large
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and so the claim follows observing that for x ∈ N−
p

μ−
p

, then | − �s−
p (x)| ≤ 1.

Hence, by the arbitrariness of r > 0, we have that s−
p → V in C1

loc(R
2 \ {0}) where V is

a solution of

−�V = eV in R
2 \ {0}

which satisfies V ≤ 0 and V (−x∞) = 0 where x∞ is defined in (3.6).
Moreover eV ∈ L1(R2), indeed for any r > 0 and for any ε ∈ (0, 1)

∫
B 1

r
(0)\Br (0)

eV dx ≤
∫

B 1
r
(0)\Br (0)

|u p(μ
−
p x)|p+1

|u p(x−
p )|p+1

dx + op(1)

= p

|u p(x−
p )|2

∫
B

μ
−
p

r

(0)\B
rμ

−
p
(0)

|u p(y)|p+1dy + op(1)

Lemma 2.1 (i)≤ p

(1 − ε)2

∫
�

|u p(y)|p+1dy + op(1)
(1.2)
< +∞.

Observe that if V was a classical solution of −�V = eV in the whole R
2 then necessarily

V (x) = U (x + x∞). As a consequence, v−
p (x) = s−

p (x + x−
p

μ−
p
) → V (x − x∞) = U (x)

in C1
loc(R

2 \ {x∞}). Observe that since x∞ = − lim p
x−

p

μ−
p

, then [8, Proposition 3.8] applies,

implying that
|x−

p |
μ−

p
→ 0 as p → +∞, and this is in contradiction with Proposition 3.3.

Thus, by [4–6] and the classification given in [3], we have that V solves, for some η > 0,
the following entire equation

{−�V = eV − 4πηδ0 in R
2∫

R2 eV dx = 8π(1 + η),
(3.9)

where δ0 denotes the Dirac measure centered at the origin.
Since s−

p is G-symmetric, by the classification of [11] either V is radial or η+1
|G| ∈ N and

V is (η + 1)-symmetric.
If V is radial, then V (r) satisfies⎧⎨

⎩
−V ′′ − 1

r V ′ = eV in (0,+∞)

V ≤ 0
V (�) = V ′(�) = 0

.

The solutions of this problem are

V (r) = log

⎛
⎜⎜⎜⎝

4

δ2

e
√

2
δ

(log r−y))

(
1 + e

√
2

δ
(log r−y))

)2

⎞
⎟⎟⎟⎠ − 2 log r (3.10)

for δ > 0, y ∈ R.

Observe that from V ′(r) = 0 we get 1−√
2δ

1+√
2δ

= e
√

2
δ

(log r−y) and moreover V (r) = 0 for

r =
√

1−2δ2

δ
. Hence, by V (�) = V ′(�) = 0 it follows that �2 = 1−2δ2

δ2 which implies that

δ = 1√
2+�2 . Inserting this estimate into (3.10) we get
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V (r) = log

(
2α2βαrα−2

(βα + rα)2

)
,

where α = √
2�2 + 4 and β = �

(
α+2
α−2

)1/α

.

On the other hand, if η+1
|G| ∈ N and V is (η + 1)-symmetric then there exists λ > 0 and

c ∈ C \ {0} such that in complex notation

V (z) = log

(
8(η + 1)2λ|z|2η

(1 + λ|zη+1 − c|2)2

)
,

moreover V (−x∞) = 0 and V (z) ≤ 0 for any z ∈ C.
Let ζ ∈ C such that ζ η+1 = c and ζ = η+1

√|c|eiθ , θ ∈ [θ∞ − π
η+1 , θ∞ + π

η+1 ), where

−x∞ = �eiθ∞ .
We first claim that

ζ = η+1
√|c|eiθ∞ . (3.11)

Let us suppose by contradiction that ζ = η+1
√|c|eiθ , θ 	= θ∞. We set d := ∂ B�(0) ∩ {tζ :

t > 0}. We know that 0 = V (−x∞) ≥ V (d) and since | − x∞|2η = |d|2η = �2η, then
|(−x∞)η+1 − c| ≤ |dη+1 − c| but this is false because |dη+1| = |(−x∞)η+1| = �η+1 and
dη+1 = (

|d|
|ζ | )

η+1c. This proves (3.11).
Next, in order to compute λ and c in terms of x∞ and η we set:

w = ze−iθ∞ and Ṽ (w) := V (z) = log

(
8(η + 1)2λ|w|2η

(1 + λ|wη+1 − c̃|2)2

)
,

where c̃ = e−i(η+1)θ∞c ∈ R
+.

Let us consider the restriction of the argument of the logarithm to the positive real line,

namely g(s) := 8(η+1)2λs2η

(1+λ(sη+1−c̃)2)2 , s ∈ (0,+∞). Being Ṽ (�) = V (−x∞) = 0 = maxC Ṽ we

have that g(�) = 1 and g′(�) = 0. Imposing these two conditions, we get

8(η + 1)2λ�2η = (1 + λ(�η+1 − c̃)2)2, (3.12)

2η(1 + λ(�η+1 − c̃)2)2 − 4(η + 1)λ�η+1(1 + λ(�η+1 − c̃)2)(�η+1 − c̃) = 0, (3.13)

and in turn combining (3.13) and (3.12) we derive

(�η+1 − c̃)
√

λ =
√

2η

�
. (3.14)

Substituting (3.14) in (3.12) we get

λ = (� + 2η2)2

8(η + 1)2�2η+4 , (3.15)

in turn by (3.14) and (3.15) we derive c̃ = �(1 − 4η(η+1)

�2+2η2 ). Thus, finally we have c =
(−x∞)η+1(1 − 4η(η+1)

�2+2η2 ). ��

Proof of Theorem 1.3 It follows from all previous results. More precisely, (i) follows from
(3.4) and Lemma 2.1. The statement (ii) derives from Proposition 3.4. The asymptotic behav-
ior of the rescaled functions v+

p and v−
p is shown in Proposition 2.4 and Proposition 3.5

Finally, (v) is a consequence of Proposition 2.2. ��
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