We develop the formalism of double Poisson vertex algebras (local and non-local) aimed at the study of non-commutative Hamiltionan PDEs. This is a generalization of the theory of double Poisson algebras, developed by Van den Bergh, which is used in the study of Hamiltonian ODEs. We apply our theory of double Poisson vertex algebras to non-commutative KP and Gelfand-Dickey hierarchies. We also construct the related non-commutative de Rham and variational complexes.
Double Poisson vertex algebras and non-commutative Hamiltonian equations / De Sole, Alberto; V., Kac; Valeri, Daniele. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 281:(2015), pp. 1025-1099. [10.1016/j.aim.2015.05.011]
Double Poisson vertex algebras and non-commutative Hamiltonian equations
DE SOLE, ALBERTO;VALERI, DANIELE
2015
Abstract
We develop the formalism of double Poisson vertex algebras (local and non-local) aimed at the study of non-commutative Hamiltionan PDEs. This is a generalization of the theory of double Poisson algebras, developed by Van den Bergh, which is used in the study of Hamiltonian ODEs. We apply our theory of double Poisson vertex algebras to non-commutative KP and Gelfand-Dickey hierarchies. We also construct the related non-commutative de Rham and variational complexes.File | Dimensione | Formato | |
---|---|---|---|
DeSole_Double-Poisson_2015.pdf
solo gestori archivio
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
944.32 kB
Formato
Adobe PDF
|
944.32 kB | Adobe PDF | Contatta l'autore |
DeSole_postprint_Double-Poisson_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
663.65 kB
Formato
Adobe PDF
|
663.65 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.