We consider a compact, orientable minimal hypersurfaces of the unit sphere and prove a comparison theorem between the spectrum of the stability operator and that of the Laplacian on 1-forms. As a corollary, we show that the index is bounded below by a linear function of the first Betti number; in particular, if the first Betti number is large, then the immersion is highly unstable.

Index bounds for minimal hypersurfaces of the sphere / Savo, Alessandro. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 59:3(2010), pp. 823-837. [10.1512/iumj.2010.59.4013]

Index bounds for minimal hypersurfaces of the sphere

SAVO, Alessandro
2010

Abstract

We consider a compact, orientable minimal hypersurfaces of the unit sphere and prove a comparison theorem between the spectrum of the stability operator and that of the Laplacian on 1-forms. As a corollary, we show that the index is bounded below by a linear function of the first Betti number; in particular, if the first Betti number is large, then the immersion is highly unstable.
2010
index; minimal hypersurfaces; first betti number
01 Pubblicazione su rivista::01a Articolo in rivista
Index bounds for minimal hypersurfaces of the sphere / Savo, Alessandro. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 59:3(2010), pp. 823-837. [10.1512/iumj.2010.59.4013]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/72778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 36
social impact