We prove lower bounds for the length of the zero set of an eigenfunction of the Laplace operator on a Riemann surface; in particular, in non-negative curvature, or when the associated eigenvalue is large, we give a lower bound which involves only the square root of the eigenvalue and the area of the manifold (modulo a numerical constant, this lower bound is sharp).

Lower bounds for the nodal length of eigenfunctions of the Laplacian / Savo, Alessandro. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - STAMPA. - 19:2(2001), pp. 133-151. [10.1023/a:1010774905973]

Lower bounds for the nodal length of eigenfunctions of the Laplacian

SAVO, Alessandro
2001

Abstract

We prove lower bounds for the length of the zero set of an eigenfunction of the Laplace operator on a Riemann surface; in particular, in non-negative curvature, or when the associated eigenvalue is large, we give a lower bound which involves only the square root of the eigenvalue and the area of the manifold (modulo a numerical constant, this lower bound is sharp).
2001
eigenfunctions; laplace operator; nodal sets; riemann surfaces
01 Pubblicazione su rivista::01a Articolo in rivista
Lower bounds for the nodal length of eigenfunctions of the Laplacian / Savo, Alessandro. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - STAMPA. - 19:2(2001), pp. 133-151. [10.1023/a:1010774905973]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/69033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact