Finance is a very broad field where the uncertainty plays a central role and every financial operator have to deal with it. In this paper we propose a new method for a trend prediction on financial time series combining a Linear Piecewise Regression with a granular computing framework. A set of parameters control the behavior of the whole system, thus making their fine tuning a critical optimization task. To this aim in this paper we employ an evolutionary optimization algorithm to tackle this crucial phase. We tested our system on both synthetic benchmarking data and on real financial time series. Our tests show very good classification results on benchmarking data. Results on real data, although not completely satisfactory, are encouraging, suggesting further developments.

Combining piecewise linear regression and a granular computing framework for financial time series classification / Modugno, Valerio; Possemato, Francesca; Rizzi, Antonello. - STAMPA. - (2014), pp. 281-288. (Intervento presentato al convegno International Conference on Evolutionary Computation Theory and Applications - ECTA 2014 tenutosi a Rome; Italy).

Combining piecewise linear regression and a granular computing framework for financial time series classification

MODUGNO, VALERIO;POSSEMATO, FRANCESCA;RIZZI, Antonello
2014

Abstract

Finance is a very broad field where the uncertainty plays a central role and every financial operator have to deal with it. In this paper we propose a new method for a trend prediction on financial time series combining a Linear Piecewise Regression with a granular computing framework. A set of parameters control the behavior of the whole system, thus making their fine tuning a critical optimization task. To this aim in this paper we employ an evolutionary optimization algorithm to tackle this crucial phase. We tested our system on both synthetic benchmarking data and on real financial time series. Our tests show very good classification results on benchmarking data. Results on real data, although not completely satisfactory, are encouraging, suggesting further developments.
2014
International Conference on Evolutionary Computation Theory and Applications - ECTA 2014
Algorithmic trading; Evolutionary optimization; Granular computing; Linear Piecewise Regression; Sequential pattern mining; Time series classification
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Combining piecewise linear regression and a granular computing framework for financial time series classification / Modugno, Valerio; Possemato, Francesca; Rizzi, Antonello. - STAMPA. - (2014), pp. 281-288. (Intervento presentato al convegno International Conference on Evolutionary Computation Theory and Applications - ECTA 2014 tenutosi a Rome; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Modugno_Combining2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 209.23 kB
Formato Adobe PDF
209.23 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/632588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact