A computational procedure able to describe the coupled hot-gas/wall/coolant environment that occurs in most liquid rocket engines is presented and demonstrated. The coupled analysis is performed by loose coupling of the two-dimensional axisymmetric Reynolds-Averaged Navier-Stokes equations for the hot-gas flow and the conjugate three-dimensional model for the coolant flow and solid material heat transfer in the regenerative cooling circuit. The latter model is in turn based on the coupled Reynolds-Averaged Navier-Stokes equations for the coolant flow and Fourier equation for the thermal conduction in the solid material. In this study, the thermal behavior of a regeneratively cooled oxygen/methane engine demonstrator is analyzed in detail. Starting from a nominal operative condition of the engine, different levels of channel surface roughness and coolant mass flow rate are considered in order to understand their influence on the heat transfer capability of the cooling system. Results show that the heat transfer can be markedly impaired if the operating parameters undergo rather minor changes with respect to the nominal condition.

Cooling Channel Analysis of a LOX/LCH4 Rocket Engine Demonstrator / Pizzarelli, Marco; Betti, Barbara; Nasuti, Francesco; Daniele, Ricci; Pietro, Roncioni; Francesco, Battista; Vito, Salvatore. - ELETTRONICO. - (2014). (Intervento presentato al convegno 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference tenutosi a Cleveland, OH, USA nel 28-30 July 2014) [10.2514/6.2014-4004].

Cooling Channel Analysis of a LOX/LCH4 Rocket Engine Demonstrator

PIZZARELLI, MARCO;BETTI, BARBARA;NASUTI, Francesco;
2014

Abstract

A computational procedure able to describe the coupled hot-gas/wall/coolant environment that occurs in most liquid rocket engines is presented and demonstrated. The coupled analysis is performed by loose coupling of the two-dimensional axisymmetric Reynolds-Averaged Navier-Stokes equations for the hot-gas flow and the conjugate three-dimensional model for the coolant flow and solid material heat transfer in the regenerative cooling circuit. The latter model is in turn based on the coupled Reynolds-Averaged Navier-Stokes equations for the coolant flow and Fourier equation for the thermal conduction in the solid material. In this study, the thermal behavior of a regeneratively cooled oxygen/methane engine demonstrator is analyzed in detail. Starting from a nominal operative condition of the engine, different levels of channel surface roughness and coolant mass flow rate are considered in order to understand their influence on the heat transfer capability of the cooling system. Results show that the heat transfer can be markedly impaired if the operating parameters undergo rather minor changes with respect to the nominal condition.
2014
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Cooling Channel Analysis of a LOX/LCH4 Rocket Engine Demonstrator / Pizzarelli, Marco; Betti, Barbara; Nasuti, Francesco; Daniele, Ricci; Pietro, Roncioni; Francesco, Battista; Vito, Salvatore. - ELETTRONICO. - (2014). (Intervento presentato al convegno 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference tenutosi a Cleveland, OH, USA nel 28-30 July 2014) [10.2514/6.2014-4004].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/626611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact