The possibility to grow in zincblende (ZB) and/or wurtzite (WZ) crystal phase widens the potential applications of semiconductor nanowires (NWs). This is particularly true in technologically relevant III-V compounds, such as GaAs, InAs, and InP, for which WZ is not available in bulk form. The WZ band structure of many III-V NWs has been widely studied. Yet, transport (that is, carrier effective mass) and spin (that is, carrier g-factor) properties are almost experimentally unknown. We address these issues in a well-characterized material: WZ indium phosphide. The value and anisotropy of the reduced mass (μexc) and g-factor (gexc) of the band gap exciton are determined by photoluminescence measurements under intense magnetic fields (B, up to 28 T) applied along different crystallographic directions. μexc is 14% greater in WZ NWs than in a ZB bulk reference and it is 6% greater in a plane containing the WZ ĉ axis than in a plane orthogonal to ĉ. The Zeeman splitting is markedly anisotropic with g exc = |ge| = 1.4 for Bĉ (where ge is the electron g-factor) and gexc = |ge - gh,//| = 3.5 for B//ĉ (where gh,// is the hole g-factor). A noticeable B-induced circular dichroism of the emitted photons is found only for B//ĉ, as expected in WZ-phase materials. © 2014 American Chemical Society.
Magneto-Optical Properties of Wurtzite-Phase InP Nanowires / DE LUCA, Marta; Polimeni, Antonio; H. A., Fonseka; A. J., Meaney; P. C. M., Christianen; J. C., Maan; S., Paiman; H. H., Tan; Mura, Francesco; C., Jagadish; Capizzi, Mario. - In: NANO LETTERS. - ISSN 1530-6984. - 14:8(2014), pp. 4250-4256. [10.1021/nl500870e]
Magneto-Optical Properties of Wurtzite-Phase InP Nanowires
DE LUCA, MARTA;POLIMENI, Antonio;MURA, FRANCESCO;CAPIZZI, Mario
2014
Abstract
The possibility to grow in zincblende (ZB) and/or wurtzite (WZ) crystal phase widens the potential applications of semiconductor nanowires (NWs). This is particularly true in technologically relevant III-V compounds, such as GaAs, InAs, and InP, for which WZ is not available in bulk form. The WZ band structure of many III-V NWs has been widely studied. Yet, transport (that is, carrier effective mass) and spin (that is, carrier g-factor) properties are almost experimentally unknown. We address these issues in a well-characterized material: WZ indium phosphide. The value and anisotropy of the reduced mass (μexc) and g-factor (gexc) of the band gap exciton are determined by photoluminescence measurements under intense magnetic fields (B, up to 28 T) applied along different crystallographic directions. μexc is 14% greater in WZ NWs than in a ZB bulk reference and it is 6% greater in a plane containing the WZ ĉ axis than in a plane orthogonal to ĉ. The Zeeman splitting is markedly anisotropic with g exc = |ge| = 1.4 for Bĉ (where ge is the electron g-factor) and gexc = |ge - gh,//| = 3.5 for B//ĉ (where gh,// is the hole g-factor). A noticeable B-induced circular dichroism of the emitted photons is found only for B//ĉ, as expected in WZ-phase materials. © 2014 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.