In 2006, Olson et al. presented a novel approach toaddress the graph-based simultaneous localization and mappingproblem by applying stochastic gradient descent to minimizethe error introduced by constraints. Together with multi-levelrelaxation, this is one of the most robust and efficient maximumlikelihood techniques published so far. In this paper, wepresent an extension of Olson's algorithm. It applies a novelparameterization of the nodes in the graph that significantlyimproves the performance and enables us to cope with arbitrarynetwork topologies. The latter allows us to bound the complexityof the algorithm to the size of the mapped area and not tothe length of the trajectory as it is the case with both previousapproaches. We implemented our technique and compared it tomulti-level relaxation and Olson's algorithm. As we demonstratein simulated and in real world experiments, our approachconverges faster than the other approaches and yields accuratemaps of the environment.

A tree parameterization for efficiently computing maximum likelihood maps using gradient descent / Grisetti, Giorgio; C., Stachniss; S., Grzonka; W., Burgard. - 3:(2007), pp. 65-72. (Intervento presentato al convegno 3rd International Conference on Robotics Science and Systems tenutosi a Atlanta; United States; 27 June 2007 through 30 June 2007).

A tree parameterization for efficiently computing maximum likelihood maps using gradient descent

GRISETTI, GIORGIO
;
2007

Abstract

In 2006, Olson et al. presented a novel approach toaddress the graph-based simultaneous localization and mappingproblem by applying stochastic gradient descent to minimizethe error introduced by constraints. Together with multi-levelrelaxation, this is one of the most robust and efficient maximumlikelihood techniques published so far. In this paper, wepresent an extension of Olson's algorithm. It applies a novelparameterization of the nodes in the graph that significantlyimproves the performance and enables us to cope with arbitrarynetwork topologies. The latter allows us to bound the complexityof the algorithm to the size of the mapped area and not tothe length of the trajectory as it is the case with both previousapproaches. We implemented our technique and compared it tomulti-level relaxation and Olson's algorithm. As we demonstratein simulated and in real world experiments, our approachconverges faster than the other approaches and yields accuratemaps of the environment.
2007
3rd International Conference on Robotics Science and Systems
Mapping; Robots; robot pose
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A tree parameterization for efficiently computing maximum likelihood maps using gradient descent / Grisetti, Giorgio; C., Stachniss; S., Grzonka; W., Burgard. - 3:(2007), pp. 65-72. (Intervento presentato al convegno 3rd International Conference on Robotics Science and Systems tenutosi a Atlanta; United States; 27 June 2007 through 30 June 2007).
File allegati a questo prodotto
File Dimensione Formato  
Grisetti_A-Tree-Parameterizatio_2007.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 652.89 kB
Formato Adobe PDF
652.89 kB Adobe PDF   Contatta l'autore
VE_2007_11573-57658.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 598.37 kB
Formato Adobe PDF
598.37 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/57658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact