The reduction of a continuous domain into a discrete one, is called tessellation. Dealing with the question from a geometrical, mathematical and historical point of view, is possible to define a path through the several meanings of this word, in the different scientific areas in which it is applied. Starting from the analysis of some of the features of the contemporary architecture, deeply influenced by the technologies it comes from (free-form represented by NURBS surfaces), our investigation focuses on the properties of euclidean plane tessellations which is called tiling. Although the art of tiling must have originated very early in the history of civilization, as soon as man began to build and to use the stones to cover the floors and the walls of his house, the science of tiling is more recent. With the term science of tiling we mean the study of its mathematical properties. Probably the first study of this kind appears in Kepler’s book Harmonices Mundi dated 1619. The research goes on with the study of the work Circle Limit III, made by the Dutch artist M.C.Escher, which represents the occasion to approach the revolutionary ideas of the hyperbolic geometry and its geometrical properties. A specific application of the hyperbolic geometry concepts is represented by the Minkowskian model of the Einstein’s space-time theory (the subject has been studied with the collaboration of the mathematician Luca Lussardi of the Mathematical Department of Politecnico di Torino). We present the discretization of other non-euclidean geometry, the elliptic one, with the aim of introducing the important theme of polyhedron which leads to the structural grids of the geodesic domes. In this part of the work, we highlighted the facet of actuality that the subject is still having in spite of its long history. As an example, we studied the specific configuration of two irregular polyhedra (one pentagonal dodecahedron and one tetrakaidecahedra) discovered by Wearie e Phelan in 1993, which can be packed together to give the least possible amount of surface film between them (they are called Wearie-Phelan bubbles). We indicated some features of the so called saddle-polyhedra studied beginning from 1960. The last chapter of the work deals with an important application of tessellation in computer technology, with the polyhedral surface called mesh. We present a brief survey of mesh generation technology, in which we compared the fundamentals algorithms used by mesh generation software used nowadays in many different fields. The methodology implemented for the whole work gives priority to the synthetic description of an event more than the symbolic one. This is possible thanks to the mathematical representation introduced with the NURBS software, which can be used as a scientific virtual laboratory: we can make an hypothesis and then verify its veracity. Another question which finds solution thanks to the mathematical representation introduced, is that one of the visualization of the subjects would be too elaborate for the traditional graphical description.

La riduzione di un sistema continuo in uno discreto prende il nome di tassellazione. Affrontando le problematiche geometriche, matematiche e storiche del tema, si definisce il filo conduttore che lega insieme i significati del termine, nei diversi settori scientifici in cui esso è applicato. A partire dall’osservazione di alcuni caratteri dell’architettura contemporanea, fortemente condizionata dagli strumenti con cui viene generata, l’indagine si sofferma sulle proprietà matematiche e geometriche del ricoprimento del piano euclideo. Per quanto l’arte della tassellazione abbia origini antichissime, da quando cioè l’uomo ha cominciato a rivestire con pietre di diverso colore e forma le proprie abitazioni, la nascita della scienza della tassellazione si data con il 1619, anno di pubblicazione dell’opera Harmonices Mundi di Johannes Keplero. L’analisi di un’opera significativa dell’artista olandese M.C. Escher, Circle Limit III, diviene l’occasione per studiare dal punto di vista storico i principi rivoluzionari delle geometrie non euclidee, ma anche per indagarne a fondo le caratteristiche geometriche e matematiche. Il percorso prosegue affrontando lo studio della discretizzazione della superficie sferica, nel grande tema che conduce dai poliedri alle strutture geodetiche. In questo particolare argomento si è voluto dare risalto all’aspetto di attualità che il tema antichissimo dei poliedri continua ad avere. Attualità, che si manifesta in alcuni poliedri scoperti nel 1993 che hanno la proprietà di tassellare lo spazio, e nei cosiddetti saddle-polyhedra studiati a partire dal 1960. L’ultima parte della ricerca è una ricognizione dei metodi di programmazione informatica, attraverso i quali vengono generate le superfici poliedriche chiamate mesh. La metodologia con cui si è condotto l’intero lavoro, è caratterizzata da due aspetti principali: il primo riguarda gli strumenti informatici oggi a disposizione del ricercatore, che offrono la possibilità di privilegiare la descrizione sintetica di un fenomeno rispetto a quella simbolica, in modo del tutto originale; il secondo, è relativo alle potenzialità della ricerca interdisciplinare, che si evidenzia nelle collaborazioni condotte con esperti di altri settori del sapere scientifico.

La discretizzazione delle superfici continue / Baglioni, Leonardo. - (2009).

La discretizzazione delle superfici continue

BAGLIONI, LEONARDO
01/01/2009

Abstract

The reduction of a continuous domain into a discrete one, is called tessellation. Dealing with the question from a geometrical, mathematical and historical point of view, is possible to define a path through the several meanings of this word, in the different scientific areas in which it is applied. Starting from the analysis of some of the features of the contemporary architecture, deeply influenced by the technologies it comes from (free-form represented by NURBS surfaces), our investigation focuses on the properties of euclidean plane tessellations which is called tiling. Although the art of tiling must have originated very early in the history of civilization, as soon as man began to build and to use the stones to cover the floors and the walls of his house, the science of tiling is more recent. With the term science of tiling we mean the study of its mathematical properties. Probably the first study of this kind appears in Kepler’s book Harmonices Mundi dated 1619. The research goes on with the study of the work Circle Limit III, made by the Dutch artist M.C.Escher, which represents the occasion to approach the revolutionary ideas of the hyperbolic geometry and its geometrical properties. A specific application of the hyperbolic geometry concepts is represented by the Minkowskian model of the Einstein’s space-time theory (the subject has been studied with the collaboration of the mathematician Luca Lussardi of the Mathematical Department of Politecnico di Torino). We present the discretization of other non-euclidean geometry, the elliptic one, with the aim of introducing the important theme of polyhedron which leads to the structural grids of the geodesic domes. In this part of the work, we highlighted the facet of actuality that the subject is still having in spite of its long history. As an example, we studied the specific configuration of two irregular polyhedra (one pentagonal dodecahedron and one tetrakaidecahedra) discovered by Wearie e Phelan in 1993, which can be packed together to give the least possible amount of surface film between them (they are called Wearie-Phelan bubbles). We indicated some features of the so called saddle-polyhedra studied beginning from 1960. The last chapter of the work deals with an important application of tessellation in computer technology, with the polyhedral surface called mesh. We present a brief survey of mesh generation technology, in which we compared the fundamentals algorithms used by mesh generation software used nowadays in many different fields. The methodology implemented for the whole work gives priority to the synthetic description of an event more than the symbolic one. This is possible thanks to the mathematical representation introduced with the NURBS software, which can be used as a scientific virtual laboratory: we can make an hypothesis and then verify its veracity. Another question which finds solution thanks to the mathematical representation introduced, is that one of the visualization of the subjects would be too elaborate for the traditional graphical description.
2009
File allegati a questo prodotto
File Dimensione Formato  
Tesi dottorato Baglioni.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 13.5 MB
Formato Adobe PDF
13.5 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/558995
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact