This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-Theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain and takes into account possible sensor measurements gathered along the path taken by the robot. We furthermore describe how to utilize the properties of the Rao-Blackwellization to efficiently compute the expected information gain. We present experimental results obtained in the real world and in simulation to demonstrate the effectiveness of our approach.

Information gain-based exploration using Rao-Blackwellized particle filters / W., Burgard; C., Stachniss; Grisetti, Giorgio. - 1:(2005), pp. 65-72. (Intervento presentato al convegno International Conference on Robotics: Science and Systems tenutosi a Cambridge, MA; USA).

Information gain-based exploration using Rao-Blackwellized particle filters

GRISETTI, GIORGIO
2005

Abstract

This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-Theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain and takes into account possible sensor measurements gathered along the path taken by the robot. We furthermore describe how to utilize the properties of the Rao-Blackwellization to efficiently compute the expected information gain. We present experimental results obtained in the real world and in simulation to demonstrate the effectiveness of our approach.
2005
International Conference on Robotics: Science and Systems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Information gain-based exploration using Rao-Blackwellized particle filters / W., Burgard; C., Stachniss; Grisetti, Giorgio. - 1:(2005), pp. 65-72. (Intervento presentato al convegno International Conference on Robotics: Science and Systems tenutosi a Cambridge, MA; USA).
File allegati a questo prodotto
File Dimensione Formato  
VE_2005_11573-55886.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 507.7 kB
Formato Adobe PDF
507.7 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/55886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 406
  • ???jsp.display-item.citation.isi??? ND
social impact