We compute the whole spectrum of the Dirichlet-to-Neumann operator acting on differential p-forms on the unit Euclidean ball. Then, we prove a new upper bound for its first eigenvalue on a domain Ω in Euclidean space in terms of the isoperimetric ratio V ol (∂Ω) / V ol (Ω). © 2013 Elsevier B.V.
On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain / S., Raulot; Savo, Alessandro. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 77:(2014), pp. 1-12. [10.1016/j.geomphys.2013.11.002]
On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain
SAVO, Alessandro
2014
Abstract
We compute the whole spectrum of the Dirichlet-to-Neumann operator acting on differential p-forms on the unit Euclidean ball. Then, we prove a new upper bound for its first eigenvalue on a domain Ω in Euclidean space in terms of the isoperimetric ratio V ol (∂Ω) / V ol (Ω). © 2013 Elsevier B.V.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.