We compute the whole spectrum of the Dirichlet-to-Neumann operator acting on differential p-forms on the unit Euclidean ball. Then, we prove a new upper bound for its first eigenvalue on a domain Ω in Euclidean space in terms of the isoperimetric ratio V ol (∂Ω) / V ol (Ω). © 2013 Elsevier B.V.

On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain / S., Raulot; Savo, Alessandro. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 77:(2014), pp. 1-12. [10.1016/j.geomphys.2013.11.002]

On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain

SAVO, Alessandro
2014

Abstract

We compute the whole spectrum of the Dirichlet-to-Neumann operator acting on differential p-forms on the unit Euclidean ball. Then, we prove a new upper bound for its first eigenvalue on a domain Ω in Euclidean space in terms of the isoperimetric ratio V ol (∂Ω) / V ol (Ω). © 2013 Elsevier B.V.
2014
manifolds with boundary; dirichlet-to-neumann operator; differential forms; eigenvalues
01 Pubblicazione su rivista::01a Articolo in rivista
On the spectrum of the Dirichlet-to-Neumann operator acting on forms of a Euclidean domain / S., Raulot; Savo, Alessandro. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 77:(2014), pp. 1-12. [10.1016/j.geomphys.2013.11.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/558018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact