A generalized linear mixed model with a nonparametric distribution for the random effect is proposed. The normality assumption for the random effects may be too restrictive to represent the between-subject distribution, especially when the longitudinal response is non-Gaussian. Starting from nonparametric graphical models, we take advantage of the nonparanormal approach to build a flexible la- tent, individual-specific structure for the longitudinal profiles. The nonparanormal method is particularly appealing since it acts on transformations of multivariate non- Gaussian random variables, and assumes that these transformations are multivariate Gaussian. Moreover, it is particularly convenient to handle the joint distribution for high-dimensional variables.

Sparse Nonparametric Graphical Models for Random Effect Distribution in GLMMs / S., Viviani; Alfo', Marco; Brutti, Pierpaolo. - ELETTRONICO. - (2013), pp. 1-6. (Intervento presentato al convegno SIS 2013 - Advances in Latent Variables - Methods, Models and Applications tenutosi a Brescia, Italy).

Sparse Nonparametric Graphical Models for Random Effect Distribution in GLMMs

ALFO', Marco;BRUTTI, Pierpaolo
2013

Abstract

A generalized linear mixed model with a nonparametric distribution for the random effect is proposed. The normality assumption for the random effects may be too restrictive to represent the between-subject distribution, especially when the longitudinal response is non-Gaussian. Starting from nonparametric graphical models, we take advantage of the nonparanormal approach to build a flexible la- tent, individual-specific structure for the longitudinal profiles. The nonparanormal method is particularly appealing since it acts on transformations of multivariate non- Gaussian random variables, and assumes that these transformations are multivariate Gaussian. Moreover, it is particularly convenient to handle the joint distribution for high-dimensional variables.
2013
SIS 2013 - Advances in Latent Variables - Methods, Models and Applications
generalized linear mixed models; graphical models; nonparametric approach; random effect distribution
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Sparse Nonparametric Graphical Models for Random Effect Distribution in GLMMs / S., Viviani; Alfo', Marco; Brutti, Pierpaolo. - ELETTRONICO. - (2013), pp. 1-6. (Intervento presentato al convegno SIS 2013 - Advances in Latent Variables - Methods, Models and Applications tenutosi a Brescia, Italy).
File allegati a questo prodotto
File Dimensione Formato  
Viviani_Sparse-nonparametric-graphical_2013.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 607.24 kB
Formato Adobe PDF
607.24 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/557130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact