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Sparse Nonparametric Graphical Models for
Random Effect Distribution in GLMMs

S. Viviani, M. Alfó and P. Brutti

Abstract A generalized linear mixed model with a nonparametric distribution for
the random effect is proposed. The normality assumption for the random effects
may be too restrictive to represent the between-subject distribution, especially when
the longitudinal response is non-Gaussian. Starting from nonparametric graphical
models, we take advantage of the nonparanormal approach to build a flexible la-
tent, individual-specific structure for the longitudinal profiles. The nonparanormal
method is particularly appealing since it acts on transformations of multivariate non-
Gaussian random variables, and assumes that these transformations are multivariate
Gaussian. Moreover, it is particularly convenient to handle the joint distribution for
high-dimensional variables.

Key words: Generalized linear mixed models, Graphical models, Random effect
distribution, Non-parametric approach

1 Introduction

In longitudinal studies, the pattern of change with respect to time of a non-Gaussian
outcome of interest is often accounted for through generalized linear mixed model,
see for instance [9] and [1]. This model postulates a linear relationship between a
given link function of the response expected value and some covariates with asso-
ciated fixed and random effects. A natural heterogeneity, deriving either from un-
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observed characteristics or varying effects of measured covariates among observed
subjects, is considered through the introduction of individual-specific latent effects,
and may includes genetic or environmental factors. Standard theory assume that the
random effects are normally distributed.

While inference on the fixed effects has been found to be robust to misspecifica-
tion of the random effect distribution, especially when the number of measurement
per individual is high enough, see for instance [2] and [17], the choice of an appro-
priate random effect density seems to be relevant for what concerns efficiency and
(unbiased) standard error estimation, see [18].

We propose a class of generalized linear mixed models with nonparametric ran-
dom effects, to allow for more flexible distributional assumptions on between-
subjects variability. In literature, relevant contributions in this field are, among oth-
ers, [8], where the nonparametric maximum likelihood estimate (NPMLE) is defined
through a discrete random effect distribution, [12] with smoothed nonparametric
ML estimator, [19], where a semiparametric method is proposed, and [4] with P-
spline based random effect distribution. Our approach is different and it is based
on one family of nonparametric graphical model, referred to as the nonparanormal
distributions. The nonparanormal can be seen as an extension of additive models
for regression to graphical modeling. Flexibility is introduced by working on the
multivariate Gaussian transformation f (Y ) of the non-Gaussian random variable
Y = (Y1, . . . ,Yd). This approach can be linked to Gaussian copulas, see [14], when
the marginal distributions are fully nonparametric. A detailed overview on graphical
models is [7], where the nonparanormal and the forest density families approaches
are compared. Essentially, these families are two different ways of representing a
graphical model: the nonparanormal is distribution based, while the forest density
forces the graphical structure to be a tree or a forest.

In this paper, we focus only on the nonparanormal distribution, applying this
concept to generalized linear mixed models. Effectively, the nonparanormal distri-
bution has been considered for observed random variables, while, at our knowledge,
no attempt has been done to extend it to latent random variables.

We compare the nonparanormal latent approach to the approach based on Gaus-
sian random effects in generalized linear mixed models in different settings, high-
lighting the situations where the proposed approach is more convenient.

The rest of the paper is as follows. In Section 2 we introduce the class of gener-
alized linear mixed models and discuss the role of the random effect distribution. In
Section 3, the nonparanormal distribution and its application to generalized linear
mixed models are reviewed in details.

2 Generalized linear mixed model

In Section 1, we stated that our aim is at proposing a flexible random effect distri-
bution for generalized linear mixed models following the nonparanormal approach.
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With this purpose, we introduce the generalized linear mixed model and discuss the
role of the random effect distribution.

Let Yi(t j) be the longitudinal outcome of interest, measured in j = 1, . . . ,ri oc-
casions for the ith subject, i = 1, . . . ,n, and xi(t j) the corresponding p-dimensional
vector of explanatory variables. Moreover, let us indicate with mi(t j) and vi(t j) the
expected value and the variance of Yi(t j). For a given individual i, the response se-
quence is a ri-vector yi(t j) = [yi(t1), . . . ,yi(tri)]

T, and Cov[yi(t j),yi(tk)] = vi(t jk).
The generalized linear mixed models, see [1], are random effect models for re-

sponses with conditional distribution in the exponential family, [9]. In these models,
the sources of unobserved individual-specific heterogeneity among individuals are
represented by random variability in the regression coefficients. Models with a ran-
dom intercept can be written as follows:

u(mi(t j)) = (β0 +bi0)+β1xi1(t j)+ . . .+βpxip(t j),

where mi(t j) = E[Yi(t j)|bi0,xi)] and u(·) is a given link function. When a set of
random regression coefficients is used, we may write bi ∼ g(0,D), where g(·) is a
proper density function which can be parametric, and the covariance matrix D needs
to be estimated.

It is known, see among others [5], [3], [15] and [18], that the fixed effect ML
estimate may not be robust to misspecification of g(·), especially when the number
of repeated measurements per individual is not high enough. The nonparametric
maximum likelihood estimate, developed among others by [5], [10] and [11], is
an appealing approach to achieve ML estimate consistency. Under this approach,
assuming conditional independence of repeated measures corresponding to the same
individual given the random effects, the longitudinal response distribution is written
as follows:

f (yi(t j)) =
∫

f (yi(t j|bi)g(bi)dbi =
∫

f (yi(t j|bi)dG(bi) (1)

≈
L

∑
l=1

f (yi(t j|bl)πl ,

and g(·) is approximated by a discrete distribution πl on L ≤ n support points. Al-
though this estimating method is theoretically strong and relatively simple to imple-
ment, it may be complicated by the high dimension of the random effects. Further-
more, some authors, see e.g. the discussion in [13] and [16] criticized this approach
as unrealistic and have proposed a smooth version of the nonparametric mixing dis-
tribution, see [18], [19], [4] among others. In this perspective, the nonparanormal
approach may be an alternative, since the assumption of continuous random effects
still holds.
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3 The Nonparanormal approach

Let us consider a multivariate random coefficient vector with dimension d for the
ith subject, bi = [bi1, . . . ,bid ]

T, and a transformed random variable hi = h(bi) =
[h(bi1), . . . ,h(bid)]

T such that h(bi) is multivariate Gaussian. This transformation
leads to a nonparametric extension of the normal approach called nonparanormal
distribution. This family of distributions requires the estimate of the univariate func-
tions hik = h(bik), k = 1, . . . ,d, and the covariance matrix D.
The nonparanormal can be seen as an extension of copulas, [14], with fully non-
parametric marginals; therefore, the estimation of univariate marginals hik may be
done as follows:

h(bik) = µk +σkΦ
−1(Gk(bik)), (2)

where µk and σk are the kth component mean and standard deviation, Φ−1(·) is the
inverse of the Gaussian distribution function and Gk is the distribution function of
bik. Moreover, it is assumed that E(hik) =E(bik) = µk and Var(hik) =Var(bik) =σk.
Once hik is estimated, we transform bi = [bi1, . . . ,bid ]

T to multivariate Gaussian ran-
dom variable h(bi)= [h(bi1), . . . ,h(bid)]

T and apply methods for Gaussian graphical
models to estimate the graph. It is worth noticing that in this case, the sparsity of the
model is regulated through the precision matrix Ω = D−1.

We say that bi has a nonparanormal distribution, i.e. bi ∼ NPN(µ,D,h), when
there exist functions h(·) such that h(bi)∼MV N(µ,D). If hik = h(bik), k = 1, . . . ,d,
is differentiable, the joint density function of bi is given by

g(bi|D) =
1

(2π)d/2|D1/2|
exp
{
−1

2
(h(bi)−µ)TD−1(h(bi)−µ)

} d

∏
k=1
|h′(bik)|,

(3)
where µ = [µ1, . . . ,µk]

T and |h′(bik)| is the jacobian of hik. It can be noticed that
density in expression (3) is not identifiable. To make the family identifiable, it is
required that hik preserves marginal means and variances. Hence, we fix µk = 0 and
σk = σ0k, k = 1, . . . ,d, and the sparsity of the model is identified by the estimation
of the random effect covariances.

3.1 Estimation

For the estimation of hik and the precision matrix Ω , we follow the procedure de-
scribed in [7], with the exception that we work with latent rather than observed
variables. The procedure is similar to the one adopted by [6]. We assume that bi is
nonparanormal with marginals following a Dirichlet process, i.e. Gk = DP(G0,αk).
Here, G0∼N(0,1) and αk is a (component-specific) precision parameter, measuring
the displacement of Gk from G0. In summary, we have

Yi(t j) | bi ∼ EF(ηi(t j))
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ηi(t j) = β
Txi(t j)+bT

i zi(t j)

bi ∼ NPN(µ,Ω ,h)
Gk ∼ DP(G0,αk) ,

where EF stands for a distribution which belongs to the exponential family, and
zi(t j) is a row vector of covariates associated to subject-specific effects. We can ap-
proximate the marginal distribution function for the k-th dimension by the following
finite sum

Gk =
L

∑
`=1

π
k
` δ

θ k
`
.

see for instance [6]. By developing an approach based on stick breaking processes,
we assume that the locations θ k

` and the weights πk
` are distributed as follows:

θ
k
` ∼ G0 = N(0,1)

π
k
` = ν

k
`

`−1

∏
h=1

(1−ν
k
` )

ν
k
` ∼ Beta(1,αk) .

The longitudinal and random effect distributions are:

f (yi | bi) = ∏
j

f (yi(t j) | bi) ;

g(bi | ν) ∝ exp

(
−1

2
(hi−µ)TΩ(hi−µ)

)
∏

k

∣∣h′ik∣∣ .

Within this modeling framework, h(·) can be written for the `-th location and the
k-th component as

hk`(θ
k
` ) = µk +σkΦ

−1(Gk(θ
k
` )
)
= µk +σkΦ

−1(
∑
`
h=1πk

hδ
θ k

h

)
.

The complete log-likelihood is then:

log [Lc(·)] = ∑
i

∑
`

zi`

[
log f (yi | θ `)+ logg(θ ` | ν`)+∑

k
log p(νk

` | αk)

]
,

where zi` = 1 if bi comes from the `-th component, and zi` = 0 otherwise.
Parameter estimation is performed via an EM type algorithm.
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