DNA methyltransferases (DNMTs) are important enzymes involved in epigenetic control of gene expression and represent valuable targets in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi) have been studied in cancer, including in cancer stem cells, and two of them (azacytidine and decitabine) have been approved for treatment of myelodysplastic syndromes. However, only a few non-nucleoside DNMTi have been identified so far, and even fewer have been validated in cancer. Through a process of hit-to-lead optimization, we report here the discovery of compound 5 as a potent non-nucleoside DNMTi that is also selective toward other Ado Met-dependent protein methyltransferases. Compound 5 was potent at single-digit micromolar concentrations against a panel of cancer cells and was less toxic in peripheral blood mononuclear cells than two other compounds tested. In mouse medulloblastoma stem cells, 5 inhibited cell growth, whereas related compound 2 showed high cell differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem cell line.

Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells / Valente, Sergio; Yiwei, Liu; Michael, Schnekenburger; Zwergel, Clemens; Sandro, Cosconati; Christina, Gros; Maria, Tardugno; Donatella, Labella; Cristina, Florean; Steven, Minden; Hideharu, Hashimoto; Yanqi, Chang; Xing, Zhang; Gilbert, Kirsch; Ettore, Novellino; Paola B., Arimondo; Miele, Evelina; Ferretti, Elisabetta; Gulino, Alberto; Marc, Diederich; Xiaodong, Cheng; Mai, Antonello. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - ELETTRONICO. - 57:3(2014), pp. 701-713. [10.1021/jm4012627]

Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells

VALENTE, Sergio;ZWERGEL, CLEMENS;MIELE, EVELINA;FERRETTI, ELISABETTA;GULINO, Alberto;MAI, Antonello
2014

Abstract

DNA methyltransferases (DNMTs) are important enzymes involved in epigenetic control of gene expression and represent valuable targets in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi) have been studied in cancer, including in cancer stem cells, and two of them (azacytidine and decitabine) have been approved for treatment of myelodysplastic syndromes. However, only a few non-nucleoside DNMTi have been identified so far, and even fewer have been validated in cancer. Through a process of hit-to-lead optimization, we report here the discovery of compound 5 as a potent non-nucleoside DNMTi that is also selective toward other Ado Met-dependent protein methyltransferases. Compound 5 was potent at single-digit micromolar concentrations against a panel of cancer cells and was less toxic in peripheral blood mononuclear cells than two other compounds tested. In mouse medulloblastoma stem cells, 5 inhibited cell growth, whereas related compound 2 showed high cell differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem cell line.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells / Valente, Sergio; Yiwei, Liu; Michael, Schnekenburger; Zwergel, Clemens; Sandro, Cosconati; Christina, Gros; Maria, Tardugno; Donatella, Labella; Cristina, Florean; Steven, Minden; Hideharu, Hashimoto; Yanqi, Chang; Xing, Zhang; Gilbert, Kirsch; Ettore, Novellino; Paola B., Arimondo; Miele, Evelina; Ferretti, Elisabetta; Gulino, Alberto; Marc, Diederich; Xiaodong, Cheng; Mai, Antonello. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - ELETTRONICO. - 57:3(2014), pp. 701-713. [10.1021/jm4012627]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/547528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 103
social impact