Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a "discretization" of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.

Background modeling in the maritime domain / Bloisi, Domenico Daniele; Pennisi, Andrea; Iocchi, Luca. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - STAMPA. - 25:5(2014), pp. 1257-1269. [10.1007/s00138-013-0554-5]

Background modeling in the maritime domain

BLOISI, Domenico Daniele;PENNISI, ANDREA;IOCCHI, Luca
2014

Abstract

Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a "discretization" of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.
2014
background subtraction; computer vision; dynamic background; maritime surveillance; maritime dataset; image segmentation
01 Pubblicazione su rivista::01a Articolo in rivista
Background modeling in the maritime domain / Bloisi, Domenico Daniele; Pennisi, Andrea; Iocchi, Luca. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - STAMPA. - 25:5(2014), pp. 1257-1269. [10.1007/s00138-013-0554-5]
File allegati a questo prodotto
File Dimensione Formato  
VE_2014_11573-542601.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/542601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 36
social impact