Age-related dysbioses of intestinal microbiota and decline in the overall metabolic homeostasis are frequently found in the elderly. Probiotic supplementation may represent a way to prevent or reduce the senescence-associated metabolic disorders. The present study evaluated the metabolic impact of Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 supplementation in relation to age by analyzing urine and feces metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy and multivariate analysis. Adult (3 mo old) and aged (16 mo old) mice received an oral supplementation of the 2 probiotics (1 × 10(9) colony-forming units/d each) or phosphate buffered saline (control) daily for 30 d. Urine and feces were collected for 48 h before the end of the study. Partial least squares-discriminant analysis showed that the urinary discriminant metabolites for the probiotic treatment included higher dimethylglycine in adult and aged mice, lower sarcosine and nicotinate in adult mice, higher N-methylnicotinamide in adult mice and lower N-methylnicotinamide in aged mice compared with their controls. These results indicate a probiotic-induced modulation of homocysteine and NAD metabolism pathways, which have important implications because these pathways are involved in essential cellular processes that can be altered in senescence. The probiotic supplementation also modified the fecal metabolic profiles, inducing in both adult and aged mice higher 4-hydroxyphenylacetate and lower xylose in treated mice compared with their control mice, whereas valerate was greater in treated adult mice and lower in treated aged mice compared with their controls. The ANOVA simultaneous component analysis on urinary and fecal metabolic profiling showed an age × treatment interaction (P < 0.05), confirming the age-related modulation of the metabolic response to probiotic supplementation. The results suggest that L. acidophilus and B. lactis may prevent or reduce age-related metabolic dysfunction.
Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice / Brasili, Elisa; E., Mengheri; Tomassini, Alberta; Capuani, Giorgio; M., Roselli; A., Finamore; Sciubba, Fabio; Marini, Federico; Miccheli, Alfredo. - In: JOURNAL OF NUTRITION. - ISSN 0022-3166. - STAMPA. - 143:10(2013), pp. 1549-1557. [10.3945/jn.113.177105]
Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice.
BRASILI, ELISA;TOMASSINI, Alberta;CAPUANI, Giorgio;SCIUBBA, FABIO;MARINI, Federico;MICCHELI, Alfredo
2013
Abstract
Age-related dysbioses of intestinal microbiota and decline in the overall metabolic homeostasis are frequently found in the elderly. Probiotic supplementation may represent a way to prevent or reduce the senescence-associated metabolic disorders. The present study evaluated the metabolic impact of Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 supplementation in relation to age by analyzing urine and feces metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy and multivariate analysis. Adult (3 mo old) and aged (16 mo old) mice received an oral supplementation of the 2 probiotics (1 × 10(9) colony-forming units/d each) or phosphate buffered saline (control) daily for 30 d. Urine and feces were collected for 48 h before the end of the study. Partial least squares-discriminant analysis showed that the urinary discriminant metabolites for the probiotic treatment included higher dimethylglycine in adult and aged mice, lower sarcosine and nicotinate in adult mice, higher N-methylnicotinamide in adult mice and lower N-methylnicotinamide in aged mice compared with their controls. These results indicate a probiotic-induced modulation of homocysteine and NAD metabolism pathways, which have important implications because these pathways are involved in essential cellular processes that can be altered in senescence. The probiotic supplementation also modified the fecal metabolic profiles, inducing in both adult and aged mice higher 4-hydroxyphenylacetate and lower xylose in treated mice compared with their control mice, whereas valerate was greater in treated adult mice and lower in treated aged mice compared with their controls. The ANOVA simultaneous component analysis on urinary and fecal metabolic profiling showed an age × treatment interaction (P < 0.05), confirming the age-related modulation of the metabolic response to probiotic supplementation. The results suggest that L. acidophilus and B. lactis may prevent or reduce age-related metabolic dysfunction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.