The Sapienza aerospace research center (CRAS) is involved in the design and manufacturing of a cold gas micropropulsion system for attitude control to be tested on board the Ursa Maior CubeSat in the frame of the QB50 project. The main goal is to design and test a new integrated MEMS (Micro Electro Mechanical System) valve-nozzle system. The whole system is designed to fit in a 1/2 U of the CubeSat. The MEMS nozzle and valve are manufactured by means of innovative techniques: the present MEMS nozzle has an axis symmetric geometry and it is controlled by a MEMS valve which works mainly like an electromagnetic valve. The micropropulsion test consists in providing a constant thrust for a given amount of time and measuring the angular velocity induced by the thruster on the CubeSat by means of the IMU. Reliability and repeatability will be confirmed by 10 tests at the same nominal thrust. Copyright © 2013 by the International Astronautical Federation. All rights reserved.

MEMS cold gas microthruster on Ursa Maior CubeSat / Piergentili, Fabrizio; Balucani, M.; Crescenzi, R.; Piattoni, J.; Santoni, Fabio; Betti, B.; Nasuti, F.; Onofri, M.. - STAMPA. - 9:(2013), pp. 7137-7143. (Intervento presentato al convegno 64th International Astronautical Congress 2013, IAC 2013 tenutosi a Beijing nel 23 September 2013 through 27 September 2013).

MEMS cold gas microthruster on Ursa Maior CubeSat

PIERGENTILI, FABRIZIO;M. Balucani;SANTONI, Fabio;F. Nasuti;
2013

Abstract

The Sapienza aerospace research center (CRAS) is involved in the design and manufacturing of a cold gas micropropulsion system for attitude control to be tested on board the Ursa Maior CubeSat in the frame of the QB50 project. The main goal is to design and test a new integrated MEMS (Micro Electro Mechanical System) valve-nozzle system. The whole system is designed to fit in a 1/2 U of the CubeSat. The MEMS nozzle and valve are manufactured by means of innovative techniques: the present MEMS nozzle has an axis symmetric geometry and it is controlled by a MEMS valve which works mainly like an electromagnetic valve. The micropropulsion test consists in providing a constant thrust for a given amount of time and measuring the angular velocity induced by the thruster on the CubeSat by means of the IMU. Reliability and repeatability will be confirmed by 10 tests at the same nominal thrust. Copyright © 2013 by the International Astronautical Federation. All rights reserved.
2013
64th International Astronautical Congress 2013, IAC 2013
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
MEMS cold gas microthruster on Ursa Maior CubeSat / Piergentili, Fabrizio; Balucani, M.; Crescenzi, R.; Piattoni, J.; Santoni, Fabio; Betti, B.; Nasuti, F.; Onofri, M.. - STAMPA. - 9:(2013), pp. 7137-7143. (Intervento presentato al convegno 64th International Astronautical Congress 2013, IAC 2013 tenutosi a Beijing nel 23 September 2013 through 27 September 2013).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/523550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact