Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Catalogo dei prodotti della ricerca
Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusions: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%.
Enhanced interpretation of newborn screening results without analyte cutoff values / Gregg, Marquardt; Robert, Currier; David M. S., Mchugh; Dimitar, Gavrilov; Mark J., Magera; Dietrich, Matern; Devin, Oglesbee; Kimiyo, Raymond; Piero, Rinaldo; Emily H., Smith; Silvia, Tortorelli; Coleman T., Turgeon; Fred, Lorey; Bridget, Wilcken; Veronica, Wiley; Lawrence C., Greed; Barry, Lewis; François, Boemer; Roland, Schoos; Sandrine, Marie; Marie Francoise, Vincent; Yuri Cleverthon, Sica; Mouseline Torquado, Domingos; Khalid Al, Thihli; Graham, Sinclair; Osama Y., Al Dirbashi; Pranesh, Chakraborty; Mark, Dymerski; Cory, Porter; Adrienne, Manning; Margretta R., Seashore; Jonessy, Quesada; Alejandra, Reuben; Petr, Chrastina; Petr, Hornik; Iman Atef, Mandour; Sahar Abdel Atty, Sharaf; Olaf, Bodamer; Bonifacio, Dy; Jasmin, Torres; Roberto, Zori; David, Cheillan; Christine Vianey, Saban; David, Ludvigson; Adrya, Stembridge; Jim, Bonham; Melanie, Downing; Yannis, Dotsikas; Yannis L., Loukas; Vagelis, Papakonstantinou; Georgios S. A., Zacharioudakis; Akos, Barath; Eszter, Karg; Leifur, Franzson; Jon J., Jonsson; Nancy N., Breen; Barbara G., Lesko; Stanton L., Berberich; Kimberley, Turner; Margherita, Ruoppolo; Emanuela, Scolamiero; Antonozzi, Italo; Carducci, Claudia; Ubaldo, Caruso; Michela, Cassanello; G., La Marca; Elisabetta, Pasquini; Iole Maria Di, Gangi; Giuseppe, Giordano; Marta, Camilot; Francesca, Teofoli; Shawn M., Manos; Colleen K., Peterson; Stephanie K., Mayfield Gibson; Darrin W., Sevier; Soo Youn, Lee; Hyung Doo, Park; Issam, Khneisser; Phaidra, Browning; Fizza Gulamali, Majid; Michael S., Watson; Roger B., Eaton; Inderneel, Sahai; Consuelo, Ruiz; Rosario, Torres; Mary A., Seeterlin; Eleanor L., Stanley; Amy, Hietala; Mark, Mccann; Carlene, Campbell; Patrick V., Hopkins; Monique G., De Sain Van Der Velden; Bert, Elvers; Mark A., Morrissey; Sherlykutty, Sunny; Detlef, Knoll; Dianne, Webster; Dianne M., Frazier; Julie D., Mcclure; David E., Sesser; Sharon A., Willis; Hugo, Rocha; Laura, Vilarinho; C., John; James, Lim; S., Graham Caldwell; Kathy, Tomashitis; Daisy E., Castineiras Ramos; Jose Angel Cocho De, Juan; Inmaculada Rueda, Fernandez; Raquel Yahyaoui, Macias; Jose Maria Egea, Mellado; Inmaculada Gonzalez, Gallego; Carmen Delgado, Pecellin; Maria Sierra Garcia Valdecasas, Bermejo; Yin Hsiu, Chien; Wuh Liang, Hwu; Thomas, Childs; Christine D., Mckeever; Tijen, Tanyalcin; Mahera, Abdulrahman; Cecilia, Queijo; Aída, Lemes; Tim, Davis; William, Hoffman; Mei, Baker; Gary L., Hoffman. - In: GENETICS IN MEDICINE. - ISSN 1098-3600. - STAMPA. - 14:7(2012), pp. 648-655. [10.1038/gim.2012.2]
Enhanced interpretation of newborn screening results without analyte cutoff values
Gregg Marquardt;Robert Currier;David M. S. Mchugh;Dimitar Gavrilov;Mark J. Magera;Dietrich Matern;Devin Oglesbee;Kimiyo Raymond;Piero Rinaldo;Emily H. Smith;Silvia Tortorelli;Coleman T. Turgeon;Fred Lorey;Bridget Wilcken;Veronica Wiley;Lawrence C. Greed;Barry Lewis;François Boemer;Roland Schoos;Sandrine Marie;Marie Francoise Vincent;Yuri Cleverthon Sica;Mouseline Torquado Domingos;Khalid Al Thihli;Graham Sinclair;Osama Y. Al Dirbashi;Pranesh Chakraborty;Mark Dymerski;Cory Porter;Adrienne Manning;Margretta R. Seashore;Jonessy Quesada;Alejandra Reuben;Petr Chrastina;Petr Hornik;Iman Atef Mandour;Sahar Abdel Atty Sharaf;Olaf Bodamer;Bonifacio Dy;Jasmin Torres;Roberto Zori;David Cheillan;Christine Vianey Saban;David Ludvigson;Adrya Stembridge;Jim Bonham;Melanie Downing;Yannis Dotsikas;Yannis L. Loukas;Vagelis Papakonstantinou;Georgios S. A. Zacharioudakis;Akos Barath;Eszter Karg;Leifur Franzson;Jon J. Jonsson;Nancy N. Breen;Barbara G. Lesko;Stanton L. Berberich;Kimberley Turner;Margherita Ruoppolo;Emanuela Scolamiero;ANTONOZZI, Italo;CARDUCCI, Claudia;Ubaldo Caruso;Michela Cassanello;G. La Marca;Elisabetta Pasquini;Iole Maria Di Gangi;Giuseppe Giordano;Marta Camilot;Francesca Teofoli;Shawn M. Manos;Colleen K. Peterson;Stephanie K. Mayfield Gibson;Darrin W. Sevier;Soo Youn Lee;Hyung Doo Park;Issam Khneisser;Phaidra Browning;Fizza Gulamali Majid;Michael S. Watson;Roger B. Eaton;Inderneel Sahai;Consuelo Ruiz;Rosario Torres;Mary A. Seeterlin;Eleanor L. Stanley;Amy Hietala;Mark Mccann;Carlene Campbell;Patrick V. Hopkins;Monique G. De Sain Van Der Velden;Bert Elvers;Mark A. Morrissey;Sherlykutty Sunny;Detlef Knoll;Dianne Webster;Dianne M. Frazier;Julie D. Mcclure;David E. Sesser;Sharon A. Willis;Hugo Rocha;Laura Vilarinho;C. John;James Lim;S. Graham Caldwell;Kathy Tomashitis;Daisy E. Castineiras Ramos;Jose Angel Cocho De Juan;Inmaculada Rueda Fernandez;Raquel Yahyaoui Macias;Jose Maria Egea Mellado;Inmaculada Gonzalez Gallego;Carmen Delgado Pecellin;Maria Sierra Garcia Valdecasas Bermejo;Yin Hsiu Chien;Wuh Liang Hwu;Thomas Childs;Christine D. Mckeever;Tijen Tanyalcin;Mahera Abdulrahman;Cecilia Queijo;Aída Lemes;Tim Davis;William Hoffman;Mei Baker;Gary L. Hoffman
2012
Abstract
Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusions: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/491197
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
39
110
103
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.