In this paper the stabilization problem for a flexible slewing link is considered, leading to some interesting considerations about the use of positive real compensators. By modelling the structure motion as a set of first order differential equations on a proper Hilbert space, the authors study this problem in an infinite-dimensional setting by following two approaches. In the first one standard results on semigroups theory are considered, while in the second the authors use passivity arguments, directly related to the classical Lyapunov direct method. Control applications such as set-point motion and LQR are finally reviewed

Stabilization and control of a flexible structure continuum model / DE SANTIS, Alberto; Lanari, Leonardo. - (1993), pp. 3210-3215. (Intervento presentato al convegno 32nd IEEE Conference on Decision and Control (CDC'93) tenutosi a San Antonio, TX) [10.1109/CDC.1993.325795].

Stabilization and control of a flexible structure continuum model

DE SANTIS, Alberto;LANARI, Leonardo
1993

Abstract

In this paper the stabilization problem for a flexible slewing link is considered, leading to some interesting considerations about the use of positive real compensators. By modelling the structure motion as a set of first order differential equations on a proper Hilbert space, the authors study this problem in an infinite-dimensional setting by following two approaches. In the first one standard results on semigroups theory are considered, while in the second the authors use passivity arguments, directly related to the classical Lyapunov direct method. Control applications such as set-point motion and LQR are finally reviewed
1993
32nd IEEE Conference on Decision and Control (CDC'93)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Stabilization and control of a flexible structure continuum model / DE SANTIS, Alberto; Lanari, Leonardo. - (1993), pp. 3210-3215. (Intervento presentato al convegno 32nd IEEE Conference on Decision and Control (CDC'93) tenutosi a San Antonio, TX) [10.1109/CDC.1993.325795].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/442654
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact