A generalization of the Cellular Neural Network paradigm is obtained by removing the uniformity constraint on weight values. Such Generalized CNNs are capable of new tasks, such as function approximation or associative memory. A stability analysis of these networks is presented. Adaptation and application of a gradient descent learning algorithm is then discussed.
Generalized CNN: potentials of a CNN with non-uniform weights / Balsi, Marco. - STAMPA. - (1992), pp. 129-134. (Intervento presentato al convegno Second IEEE International Workshop on Cellular Networks and their Applications tenutosi a Monaco, Germania).
Generalized CNN: potentials of a CNN with non-uniform weights
BALSI, Marco
1992
Abstract
A generalization of the Cellular Neural Network paradigm is obtained by removing the uniformity constraint on weight values. Such Generalized CNNs are capable of new tasks, such as function approximation or associative memory. A stability analysis of these networks is presented. Adaptation and application of a gradient descent learning algorithm is then discussed.File | Dimensione | Formato | |
---|---|---|---|
Balsi_Generalized-CNN_1992.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
346.15 kB
Formato
Adobe PDF
|
346.15 kB | Adobe PDF | |
Balsi_Generalized_1992.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
288.75 kB
Formato
Adobe PDF
|
288.75 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.