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Abstract - A generalization of the Cellular Neural Network paradigm 1S
obtained by removing the uniformity constraint on welght wvalues. Such
Generalized CNNs are capable of new tasks, such as function approximation
or associative memory. A stability analysis of these networks is Dresented.
Adaptation and application of a gradient descent learning algorithm is then
discussed. '

ITntroduction ~ The most important characteristic of Cellular Nevral
Networks (CNN) as defined by Chua & Yang {CHUB8] 1is locality of
connections, that greatly simplifies the layout problem for IC realization.

The said model, however, involves another significant constraint in
the uniformity of weight values, so that processing consists of a spatial
convolution with an operator defined by the cloning template. In this way,
ard also with thé extension to non—linear and delay-type templates {05907,
many image processing problems have Dbeen successfully solved [CNNASG],
always using the network with strong encugh self—-feedback as t¢ obtain
saturated (i.e. *1) steady—state outputs.

If the constraint on uniformity of weights is  remcved, new
applications may be conceived for CNNs, such as Content—Addressable Memory
(CAM) [TANSO}, classification. function approximation, that cannot e
implemented by traditional CNNs.

I shall call Generalized CNN (GCMN) a network which is identical to
Chua & Yang’'s [CHUSS] when parameters A(i,j:k.l), B(i,i:k.1), I(i,3) are
allowed to vary arbitrarily while respecting the locality condition. GCNNs
are included in the extended definition of CNN recéntly given by Roska
(ROS92]. In the following, normalization Rx =1, C =1 is applied, and
B(i, j:k,1) = ét; without loss of generality. Voltages v . v, v, in
[CHUSB} will be denoted %, y, u in the following. I shall always consider
networks with clamped inputs and neglect specifying that sums over cell

indices must be taken inside the significant neighborhood.
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Therefore, GCNN neuron dynamics is written as follows:
>&j(t) = ~x”(t) + 5, A?i,j;k,l}f{xiL(t)) + 1{(i,3) + U (1}

e to the peculiarities of the model, development of CNN thecry has.
followed methods that are quite different from those usually applied in
Mewral Network (NN) theory ard scmetimes are more simsilar to Digital Signal
Processing methodologies. This is most evident concerning cone of the most
important topics of NN theory: learning.

In this paper I shall discuss stability of GCNNs, based on known
results of CNN and NN theory. On this basis I discuss possible applications
of the paradigm. The learning issue is later cenfronted, by considering the
possibility of application of standard NN algorithms, especially a gradient
descent method.

Stability - It is possible to apply to GCNNs many known résults from
CHNN and NN theory.

Theorem 1 (bound on state values): If ¥ i.j J>%j(G)| <1, Itﬁjf < 1 arnd
iILjE = I, then al; states are bourded for all time €t > 0 and the bourd
X o is computed as"follows: '
by =2+I+macg Lo 1AL Bk )] -
i,

Thc
Proof: It is theorem 1 of [CHUBS].
Theorem 2 (stability of reciprocal nets): If ¥ i,4.k. 1 A5k, 1) =
= A(k,1;1,3). then the network is globally asymptotically stable.
Froof: Follows imﬁediately from theorems 2.3 and 4 of [CHUS8].

fhecren 3 (satwsted steady-state cutput): IF ¥ 1,3 AC1,3;1,3) > 1 then

-

magnitude of stable states must be grater than 1.
Proof: It is theorem 5 of [CHUSS].
Thecrem 4 (stability of low—level—fesdback nets):; If ¥ 1,3
R(i.5:0,3) v 12 8, [[A(i.j;k,l)j+|A(k,1;i,j>1} <1
(where A(i,J;1,3) may alsc take negative wvalues) theh the network is
glebally asymptotically stable,
Proof: Follows immediately from thecrem 3 of [HIR8I).
Theorem 5 (stability of positive-cell-linking networks): If ¥ 1,3.%,1
Ali,izk, 1) = 0 and V¥V i,3.k.1 there is a path on the network greph from 1,3

to k.1 passing only through positive weights, then the network is



Proof: Follows from thecrem 1 of [CHUSO0].
Theoren & (stability of feed-forward processing GCNNs): If a GCHN  can ‘be

decomposed into a cascade of globally asymptotically stable GCNNs., i1t is
also globally asymptotically stable.

Proof: It is a corollary of theorem 5 of [HIRSS].

Applications - leaving away consideration of networks having periodic or
chaotic attractors [BAR92], two modes of operation are interesting for
neural computing: the first case is when. for every clamped input, the net
is globally convergent [HIRB9] regardless of initial conditions. In  this
case the net performs a classification of inputs when it has saturated
final states, or otherwise it implements a continuous mapping from  inputs
to continuous—valued outputs. It need not be reset and can bz cascaded by
transferring the output of a stage to the input of the following one.

In the second mode inputs are clamped to a fixed value and the net has
multiple attraction basins (it is convergent), deperding on initial
conditions. In this case classification or mapping is done between initial
conditions and final outputs. This way of functioning 1s typical of
Content—Addressable Memories (CAM).

In this paper I restrict consideration to networks operating in the
first mode.

A task for such a network may be described in general by a function
F. % + © where input space & and cutput space © may be continuous or
discrete. For instance, in a classification problem ¢ € R™ and © < 27 for
suitable n and m. For this reason. I shall discuss learning problems  as
applied to function approximation tasks for boolean and continuous mappings.
Learning - All the work that is currently being done on CNN learning has
been based on the fact that, unlike all other NN models, CNNs have very few
parameters (HAR91] ([5Z091j. This is not the case for GCNNs, and for this.
reason it is neéessary to exploit classical learning algorithms from NN
theory. The only example in literature may be found in [TANSO], where the
Hebb rule was used for CAM purposes. Other possibilities include stochastic
methods. such as simulated énnealing, or gradient. descent algorithms. In
this paper I discuss application and modification of a gradient descent
algorithm: Recwrrent Back-Propagation — (KEP) (PIN87], which 1s a
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generalization of the well knewn Back-Propagation to non-feed—forward
networks,
Recurrent Back—Propagatiorp—ConsiderGCNNdynamics(1).Asigmoida10uﬁput
function £(x) = 2{l+exp(~3x))—1 was chosen, because the wusual plecewise
linear cutput function, having zero derivative outside the interval (1,13,
would give more problems of local minima durirg learning.

Denote »™ the desired steady state output matrix with input matrix u™.
In the general case, u amd ¥ take significant values OvVer some units  only

{irput and output neurens) . Choose error measure E as follows:

_ 2, _ Mo
E=1/2 L%, @ﬁ:} ; B Sy ;<§?j)1

L]
vhere 5” 1s the stable state with input U, & 13 1 for output neurens
and 0 for neurons whose state is hidden to the external environment .
Gradient descent over error surface F yvields the usual delta rule,
which may be written as:
AL Pdrs) = A (p.qr.s) + AN p.mr,s)s I (4,5) = L3 + AL d, 5
: 8% I .o -
r - = e —————— == H AI , = N ! N
BR(P.G:r,8) = ) g N G ) AT, ) SRR G
where t?j = [f’(kii)]zﬁj and 'z“ is the fixed point of the  error

back-propagation GCNN with dynamical egquation

" i -
= + . +
s —z?j E:LA(R,I,l,J)ZtL Efj (2)
Mis net has the same topology as the original  ons, with transposed

welght tensor, a linear oﬁtput function, and errors E{i ag biases.

System (Z) has the same fixed points as (1), with the same eigenvalues
[FERS1]. However, convergence of the back-propagation network  ig not
gquaranteed by stability of fixed points of (1), because the ocutput function
15 linear. For this veason, I added a plecewise linear output furiction
gix) = 0.90{x)~1%xKi);: in this way we obtain the same back—propagation
system while in the linear region, 1.e. in a neighborhood of the solution
(that can be made large for large enough K), but the rnetwork, whose
dynamical equations are therefore‘written as

2T T BeAGG L, DgE e = @)

is now stable whenever the original one is.
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When learning is accomplished on a sequential computer, RBP is rather

slow, because it needs thousands of steps involving each the relaxation of
two networks. However, this algorithm was chosen because of the success of
crdinary back propagation in feed—forward nets. Thinking of real-life
realizations, ROP may be implemented in hardware so that one iteration step
of the algorithm lasts only a few time constants of the electronic circuit,
so that learning time 1is actually governed only by the frequency of
presentation of patterns.

Simulation results - Boolean and continuous functicon approximation was
tried on l-neighborhood planar networks (type 1, figure 1) and on layered
systems of one—dimensional networks (i.e. planar networks with selected
comnections — type 2. fig. 2).

Learning was started with random weights satisfying thecrem 4 so as to
ensure stabhility, which was generally preserved during learning, provided
that the learning rate was not too large, even 1f weights eventually
violated the condition.

Type 1 nets were socn discarded, because they tend to oscillate Véry
easily and therefcre have very long settling times (hundreds  of
time—constants). '

Type 2 networks, instead. proved capable of approximating boolean and
continuous functions. A 2x2 network was taught to compute logical AND and
¥OR of its inputs {fig. 3); 3x3 nets with both topolegies of fig. 2(a) and
(b) were able to approximate sections of sinusolds.

Conclusions and perspectives - The resultsreported in this work are enougi
to say that riew applications may open up for Cellulexr Newral Networks, in
the fields of approximation, reconstruction of signals, classification.
More extensive simulaticon is in progress in order to ingquire into the

performance of such networks when confronted with traditional fully

=4
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connected networks.

figure 1
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figure 3 XOR/AND network: weights are written near conmnections arnd cells;

hiases I are in brackets.
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