We derive a Reilly-type formula for differential p-forms on a compact manifold with boundary and apply it to give a sharp lower bound of the spectrum of the Hodge Laplacian acting on differential forms of an embedded hypersurface of a Riemannian manifold. The equality case of our inequality gives rise to a number of rigidity results, when the geometry of the boundary has special properties and the domain is non-negatively curved. Finally, we also obtain, as a byproduct of our calculations, an upper bound of the first eigenvalue of the Hodge Laplacian when the ambient manifold supports non-trivial parallel forms.

A Reilly Formula and Eigenvalue Estimates for Differential Forms / S., Raulot; Savo, Alessandro. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 21:3(2011), pp. 620-640. [10.1007/s12220-010-9161-0]

A Reilly Formula and Eigenvalue Estimates for Differential Forms

SAVO, Alessandro
2011

Abstract

We derive a Reilly-type formula for differential p-forms on a compact manifold with boundary and apply it to give a sharp lower bound of the spectrum of the Hodge Laplacian acting on differential forms of an embedded hypersurface of a Riemannian manifold. The equality case of our inequality gives rise to a number of rigidity results, when the geometry of the boundary has special properties and the domain is non-negatively curved. Finally, we also obtain, as a byproduct of our calculations, an upper bound of the first eigenvalue of the Hodge Laplacian when the ambient manifold supports non-trivial parallel forms.
2011
manifolds with boundary; spectrum; rigidity; hodge laplacian
01 Pubblicazione su rivista::01a Articolo in rivista
A Reilly Formula and Eigenvalue Estimates for Differential Forms / S., Raulot; Savo, Alessandro. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 21:3(2011), pp. 620-640. [10.1007/s12220-010-9161-0]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/410048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact