The central-western Mediterranean is one of the most important areas on Earth for studying subduction-related potassic and ultrapotassic magmatism. In the circum-Tyrrhenian area leucite-free (i.e., lamproite) and leucite-bearing (i.e., kamafugite, leucitite, and plagioleucitite) ultrapotassic rocks have been emplaced and are associated with shoshonites and high-K calc-alkaline volcanic rocks. Four different magmatic provinces are recognised from this area. Eastward and then south-eastward migration of magmatism with time occurred following roll-back of the subducting plate. Leucite-free silica-rich lamproites are restricted to the early stages of magmatism, associated with shoshonites and high-K calc-alkaline volcanic rocks. Present day volcanic activity is restricted to the Neapolitan district where ultrapotassic rocks with variable geochemical and isotopic characteristics occur. Ultrapotassic rocks are strongly enriched in incompatible trace elements with variable fractionation of Ta, Nb, and Ti with respect to Th and large ion lithophile elements. Mafic ultrapotassic rocks are also variably enriched in radiogenic Sr and Pb and unradiogenic Nd. The main geochemical and isotopic signatures result from sediment recycling within the upper mantle via subduction. Selected trace element ratios suggest that high temperatures are required to generate sediment-derived melts. Recycling of carbonated pelites play an important role in the Roman province controlling the genesis of leucite-bearing magmas. Large volumes of metasomatic components are predicted to be accommodated within a vein network in the sub-continental lithospheric mantle. Partial melting of the pure vein mineralogy is likely to generate ultrapotassic magmas of either lamproitic or kamafugitic nature. Over time, increased interaction between the metasomatic vein lithology and the surrounding mantle dilutes the alkaline component producing shoshonites and high-K calc-alkaline rocks. The addition of a further subduction-related component shortly before magma generation is required to explain the isotopic composition of rocks from the Neapolitan district. In the last phases of circum-Tyrrhenian evolution, a within-plate component appears within south-eastern Italy. This component is evident at Vulture volcano, in the Lucanian Magmatic province (SE Italy). © 2009 Elsevier B.V. All rights reserved.

Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins / Riccardo, Avanzinelli; Lustrino, Michele; Massimo, Mattei; Leone, Melluso; Sandro, Conticelli. - In: LITHOS. - ISSN 0024-4937. - STAMPA. - 113:1-2(2009), pp. 213-227. [10.1016/j.lithos.2009.03.029]

Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins

LUSTRINO, Michele;
2009

Abstract

The central-western Mediterranean is one of the most important areas on Earth for studying subduction-related potassic and ultrapotassic magmatism. In the circum-Tyrrhenian area leucite-free (i.e., lamproite) and leucite-bearing (i.e., kamafugite, leucitite, and plagioleucitite) ultrapotassic rocks have been emplaced and are associated with shoshonites and high-K calc-alkaline volcanic rocks. Four different magmatic provinces are recognised from this area. Eastward and then south-eastward migration of magmatism with time occurred following roll-back of the subducting plate. Leucite-free silica-rich lamproites are restricted to the early stages of magmatism, associated with shoshonites and high-K calc-alkaline volcanic rocks. Present day volcanic activity is restricted to the Neapolitan district where ultrapotassic rocks with variable geochemical and isotopic characteristics occur. Ultrapotassic rocks are strongly enriched in incompatible trace elements with variable fractionation of Ta, Nb, and Ti with respect to Th and large ion lithophile elements. Mafic ultrapotassic rocks are also variably enriched in radiogenic Sr and Pb and unradiogenic Nd. The main geochemical and isotopic signatures result from sediment recycling within the upper mantle via subduction. Selected trace element ratios suggest that high temperatures are required to generate sediment-derived melts. Recycling of carbonated pelites play an important role in the Roman province controlling the genesis of leucite-bearing magmas. Large volumes of metasomatic components are predicted to be accommodated within a vein network in the sub-continental lithospheric mantle. Partial melting of the pure vein mineralogy is likely to generate ultrapotassic magmas of either lamproitic or kamafugitic nature. Over time, increased interaction between the metasomatic vein lithology and the surrounding mantle dilutes the alkaline component producing shoshonites and high-K calc-alkaline rocks. The addition of a further subduction-related component shortly before magma generation is required to explain the isotopic composition of rocks from the Neapolitan district. In the last phases of circum-Tyrrhenian evolution, a within-plate component appears within south-eastern Italy. This component is evident at Vulture volcano, in the Lucanian Magmatic province (SE Italy). © 2009 Elsevier B.V. All rights reserved.
2009
circum-tyrrhenian region; corsica magmatic province; high-k calc-alkaline rocks; kamafugite; lamproite; leucitite; lucanian magmatic province; roman magmatic province; shoshonite; tuscan magmatic province
01 Pubblicazione su rivista::01a Articolo in rivista
Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins / Riccardo, Avanzinelli; Lustrino, Michele; Massimo, Mattei; Leone, Melluso; Sandro, Conticelli. - In: LITHOS. - ISSN 0024-4937. - STAMPA. - 113:1-2(2009), pp. 213-227. [10.1016/j.lithos.2009.03.029]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/39324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 186
  • ???jsp.display-item.citation.isi??? 172
social impact