We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the theta-point, with lengths up to N = 3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the theta-point temperature T-theta = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we verify in detail the theoretical predictions for its small- and large-distance behaviour.

Geometrical properties of two-dimensional interacting self-avoiding walks at the theta-point / Sergio, Caracciolo; Marco, Gherardi; Papinutto, MAURO LUCIO; Pelissetto, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 44:11(2011), p. 115004. [10.1088/1751-8113/44/11/115004]

Geometrical properties of two-dimensional interacting self-avoiding walks at the theta-point

PAPINUTTO, MAURO LUCIO;PELISSETTO, Andrea
2011

Abstract

We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the theta-point, with lengths up to N = 3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the theta-point temperature T-theta = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we verify in detail the theoretical predictions for its small- and large-distance behaviour.
2011
01 Pubblicazione su rivista::01a Articolo in rivista
Geometrical properties of two-dimensional interacting self-avoiding walks at the theta-point / Sergio, Caracciolo; Marco, Gherardi; Papinutto, MAURO LUCIO; Pelissetto, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 44:11(2011), p. 115004. [10.1088/1751-8113/44/11/115004]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/392083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact