Background & Aims: Hepatocytes are considered an exception of the paradigmatic inverse correlation between cell proliferation and terminal differentiation. In fact, hepatic vital functions are guaranteed by Proliferating parenchymal cells during liver regeneration. However, a fine molecular characterization of the relationship between proliferation and differentiation in hepatocytes has been hampered by the lack of reliable in vivo or in vitro models. Methods: The hepatocyte terminal differentiation program was characterized in the immortalized, untransformed and differentiated hepatocytic cell line MMH, using several techniques. Particularly, two-dimensional difference gel electrophoresis combined to tandem mass spectrometry proteomic approach was used. Cell cycle and cell adhesion properties of MMH have been altered using either myc-overexpression and MEK1/2 inhibition or a constitutive active beta-catenin mutant, respectively. Results: The hepatocyte terminal differentiation program is stimulated by the exit from the cell cycle induced by cell-cell contact. Comparative proteomic analysis of proliferating versus quiescent hepatocytes validated the importance of contact inhibition, identifying 68 differently expressed gene products, representing 49 unique proteins. Notably, enzymes involved in important liver functions such as detoxification processes, lipid metabolism, iron and vitamin A storage and secretion, anti-inflammatory response and exocytosis were found significantly up-regulated in quiescent hepatocytes. Finally, we found that: (i) cell cycle arrest induced by MEK1/2 inhibition is not sufficient to induce hepatic product expression: (ii) constitutive activation of beta-catenin counteracts the contact inhibition-induced terminal differentiation. Conclusion:The hepatocyte terminal differentiation program requires a quiescent state maintained by cell-cell contact through the E-cadherin/beta-catenin pathway, rather than the inhibition of proliferation. (C) 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes / Mancone, Carmine; Beatrice, Conti; Amicone, Laura; Veronica, Bordoni; Cicchini, Carla; Ludovica, Calvo; Ariel Basulto, Perdomo; Gian Maria, Fimia; Tripodi, Marco; Tonino, Alonzi; Fimia, Gian Maria. - In: JOURNAL OF HEPATOLOGY. - ISSN 0168-8278. - STAMPA. - 52:2(2010), pp. 234-243. [10.1016/j.jhep.2009.11.013]

Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes

MANCONE, Carmine;AMICONE, Laura;CICCHINI, Carla;TRIPODI, Marco
;
Fimia, Gian Maria
2010

Abstract

Background & Aims: Hepatocytes are considered an exception of the paradigmatic inverse correlation between cell proliferation and terminal differentiation. In fact, hepatic vital functions are guaranteed by Proliferating parenchymal cells during liver regeneration. However, a fine molecular characterization of the relationship between proliferation and differentiation in hepatocytes has been hampered by the lack of reliable in vivo or in vitro models. Methods: The hepatocyte terminal differentiation program was characterized in the immortalized, untransformed and differentiated hepatocytic cell line MMH, using several techniques. Particularly, two-dimensional difference gel electrophoresis combined to tandem mass spectrometry proteomic approach was used. Cell cycle and cell adhesion properties of MMH have been altered using either myc-overexpression and MEK1/2 inhibition or a constitutive active beta-catenin mutant, respectively. Results: The hepatocyte terminal differentiation program is stimulated by the exit from the cell cycle induced by cell-cell contact. Comparative proteomic analysis of proliferating versus quiescent hepatocytes validated the importance of contact inhibition, identifying 68 differently expressed gene products, representing 49 unique proteins. Notably, enzymes involved in important liver functions such as detoxification processes, lipid metabolism, iron and vitamin A storage and secretion, anti-inflammatory response and exocytosis were found significantly up-regulated in quiescent hepatocytes. Finally, we found that: (i) cell cycle arrest induced by MEK1/2 inhibition is not sufficient to induce hepatic product expression: (ii) constitutive activation of beta-catenin counteracts the contact inhibition-induced terminal differentiation. Conclusion:The hepatocyte terminal differentiation program requires a quiescent state maintained by cell-cell contact through the E-cadherin/beta-catenin pathway, rather than the inhibition of proliferation. (C) 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
2010
Beta-catenin; cell-cell contact; differentiation; mmh; proteomics; β-catenin
01 Pubblicazione su rivista::01a Articolo in rivista
Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes / Mancone, Carmine; Beatrice, Conti; Amicone, Laura; Veronica, Bordoni; Cicchini, Carla; Ludovica, Calvo; Ariel Basulto, Perdomo; Gian Maria, Fimia; Tripodi, Marco; Tonino, Alonzi; Fimia, Gian Maria. - In: JOURNAL OF HEPATOLOGY. - ISSN 0168-8278. - STAMPA. - 52:2(2010), pp. 234-243. [10.1016/j.jhep.2009.11.013]
File allegati a questo prodotto
File Dimensione Formato  
Amicone_Proteomic-analysis.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/364684
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact