Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for sampling-based approaches that the choice of the proposal distribution greatly influences the robustness and efficiency achievable by the algorithm. In this paper, we present a significantly improved proposal distribution for grid-based SLAM, which utilizes whole sequences of sensor measurements rather than only the most recent one. We have implemented our system on a real robot and evaluated its performance on standard data sets as well as in hard outdoor settings with few and ambiguous features. Our approach improves the localization accuracy and the map quality. At the same time, it substantially reduces the risk of mapping failures. © 2008 Springer-Verlag Berlin Heidelberg.

Look-ahead proposals for robust grid-based SLAM / Slawomir, Grzonka; Christian, Plagemann; Grisetti, Giorgio; Wolfram, Burgard. - 42:(2008), pp. 329-338. (Intervento presentato al convegno Field and Service Robotics Conference (FSR)) [10.1007/978-3-540-75404-6_31].

Look-ahead proposals for robust grid-based SLAM

GRISETTI, GIORGIO;
2008

Abstract

Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for sampling-based approaches that the choice of the proposal distribution greatly influences the robustness and efficiency achievable by the algorithm. In this paper, we present a significantly improved proposal distribution for grid-based SLAM, which utilizes whole sequences of sensor measurements rather than only the most recent one. We have implemented our system on a real robot and evaluated its performance on standard data sets as well as in hard outdoor settings with few and ambiguous features. Our approach improves the localization accuracy and the map quality. At the same time, it substantially reduces the risk of mapping failures. © 2008 Springer-Verlag Berlin Heidelberg.
2008
Field and Service Robotics Conference (FSR)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Look-ahead proposals for robust grid-based SLAM / Slawomir, Grzonka; Christian, Plagemann; Grisetti, Giorgio; Wolfram, Burgard. - 42:(2008), pp. 329-338. (Intervento presentato al convegno Field and Service Robotics Conference (FSR)) [10.1007/978-3-540-75404-6_31].
File allegati a questo prodotto
File Dimensione Formato  
VE_2008_11573-218770.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/218770
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact