Data augmentation is essential for handling limited and unbalanced medical datasets in classification tasks. Traditional methods, such as noise injection, random transformations, and generative adversarial networks enhance classifier accuracy, but lack intrinsic optimization for classification metrics. This work proposes a Deep Reinforcement Learning-based framework that autonomously selects and optimizes geometric/color transformations for multi-class medical image classification. Experiments on three medical datasets show that the proposed approach outperforms state-of-the-art augmentation techniques, improving classification accuracy on unseen images by over 13%.

A Deep Reinforcement Learning Control Framework for Medical Image Augmentation / Wrona, Andrea; Baldisseri, Federico; Liberati, Francesco; Menegatti, Danilo; Priscoli, Francesco Delli; Vendittelli, Marilena. - (2025), pp. 2915-2920. (Intervento presentato al convegno 2025 IEEE 21st International Conference on Automation Science and Engineering tenutosi a Los Angeles) [10.1109/case58245.2025.11163774].

A Deep Reinforcement Learning Control Framework for Medical Image Augmentation

Wrona, Andrea;Baldisseri, Federico;Liberati, Francesco;Menegatti, Danilo;Priscoli, Francesco Delli;Vendittelli, Marilena
2025

Abstract

Data augmentation is essential for handling limited and unbalanced medical datasets in classification tasks. Traditional methods, such as noise injection, random transformations, and generative adversarial networks enhance classifier accuracy, but lack intrinsic optimization for classification metrics. This work proposes a Deep Reinforcement Learning-based framework that autonomously selects and optimizes geometric/color transformations for multi-class medical image classification. Experiments on three medical datasets show that the proposed approach outperforms state-of-the-art augmentation techniques, improving classification accuracy on unseen images by over 13%.
2025
2025 IEEE 21st International Conference on Automation Science and Engineering
Data Augmentation; Geometric Transformation; Medical Image Classification; Deep Reinforcement Learning.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Deep Reinforcement Learning Control Framework for Medical Image Augmentation / Wrona, Andrea; Baldisseri, Federico; Liberati, Francesco; Menegatti, Danilo; Priscoli, Francesco Delli; Vendittelli, Marilena. - (2025), pp. 2915-2920. (Intervento presentato al convegno 2025 IEEE 21st International Conference on Automation Science and Engineering tenutosi a Los Angeles) [10.1109/case58245.2025.11163774].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1748891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact