We study the estimation problem of infinite dimensional discrete-time stochastic linear systems with finite dimensional measurements on sensor networks modeled by connected undirected graphs. The framework encompasses discretized PDEs with sampled measurements. A new scheme of distributed consensus on measurements is extended to systems evolving in L2 spaces in order to limit the information exchange to finite-dimensional vectors. We show that, in analogy to the finite-dimensional case, at each node the variance of the estimation error tends to the one of the centralized Kalman filter for systems is L2 when the number of consensus steps increases.
A Consensus Kalman Filter on L_2 spaces / Battilotti, S.; Borri, A.; D'Angelo, M.; Cacace, F.; Germani, A.. - In: AUTOMATICA. - ISSN 0005-1098. - 183:(2026). [10.1016/j.automatica.2025.112530]
A Consensus Kalman Filter on L_2 spaces
S. Battilotti
;
2026
Abstract
We study the estimation problem of infinite dimensional discrete-time stochastic linear systems with finite dimensional measurements on sensor networks modeled by connected undirected graphs. The framework encompasses discretized PDEs with sampled measurements. A new scheme of distributed consensus on measurements is extended to systems evolving in L2 spaces in order to limit the information exchange to finite-dimensional vectors. We show that, in analogy to the finite-dimensional case, at each node the variance of the estimation error tends to the one of the centralized Kalman filter for systems is L2 when the number of consensus steps increases.| File | Dimensione | Formato | |
|---|---|---|---|
|
Battilotti_preprint_A-consensu_2025.pdf
accesso aperto
Note: https://doi.org/10.1016/j.automatica.2025.112530
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | |
|
Battilotti_A-consensu_2026.pdf
solo gestori archivio
Note: https://doi.org/10.1016/j.automatica.2025.112530
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


