One way to perform field theory computations for the bond percolation problem is through the Kasteleyn and Fortuin mapping to the n + 1 states Potts model in the limit of n → 0. In this paper, we show that it is possible to recover the ε-expansion for critical exponents in finite dimension directly using the M-layer expansion, without the need to perform any analytical continuation. Moreover, we also show explicitly that the critical exponents for site and bond percolation are the same. This computation provides a reference for applications of the M-layer method to systems where the underlying field theory is unknown or disputed.

Bethe M-layer construction for the percolation problem / Angelini, Maria Chiara; Palazzi, Saverio; Rizzo, Tommaso; Tarzia, Marco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 18:1(2025), pp. 1-32. [10.21468/scipostphys.18.1.030]

Bethe M-layer construction for the percolation problem

Angelini, Maria Chiara;Palazzi, Saverio
;
Rizzo, Tommaso;Tarzia, Marco
2025

Abstract

One way to perform field theory computations for the bond percolation problem is through the Kasteleyn and Fortuin mapping to the n + 1 states Potts model in the limit of n → 0. In this paper, we show that it is possible to recover the ε-expansion for critical exponents in finite dimension directly using the M-layer expansion, without the need to perform any analytical continuation. Moreover, we also show explicitly that the critical exponents for site and bond percolation are the same. This computation provides a reference for applications of the M-layer method to systems where the underlying field theory is unknown or disputed.
2025
percolation; renormalization group; spin models
01 Pubblicazione su rivista::01a Articolo in rivista
Bethe M-layer construction for the percolation problem / Angelini, Maria Chiara; Palazzi, Saverio; Rizzo, Tommaso; Tarzia, Marco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 18:1(2025), pp. 1-32. [10.21468/scipostphys.18.1.030]
File allegati a questo prodotto
File Dimensione Formato  
Angelini_Bethe-M-layer_2025.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 606.73 kB
Formato Adobe PDF
606.73 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact