We present a greedy approach to generate parallel plans for domains featuring a large number of objects which need to undergo the same operational procedure. The number of objects is such that not even a total-order (linear) plan can be obtained, thus calling for an alternative method. We propose a compositional approach based on obtaining template solutions for the same problem but over small batches of objects and then combining them into a parallel, sub-optimal solution for the original problem. The approach is showcased on a real-world industrial use-case provided by the Procter&Gamble company in the context of the EU project AIPlan4EU.

Scaling up parallel robot plans to improve plan execution time: an industrial use-case / Giordani, E.; Santilli, S.; Iocchi, L.; Patrizi, F.; Zonfrilli, F.. - 3686:(2024), pp. 72-80. ( 10th Italian Workshop on Artificial Intelligence and Robotics, AIRO 2023 Rome; Italy ).

Scaling up parallel robot plans to improve plan execution time: an industrial use-case

Santilli S.;Iocchi L.;Patrizi F.;Zonfrilli F.
2024

Abstract

We present a greedy approach to generate parallel plans for domains featuring a large number of objects which need to undergo the same operational procedure. The number of objects is such that not even a total-order (linear) plan can be obtained, thus calling for an alternative method. We propose a compositional approach based on obtaining template solutions for the same problem but over small batches of objects and then combining them into a parallel, sub-optimal solution for the original problem. The approach is showcased on a real-world industrial use-case provided by the Procter&Gamble company in the context of the EU project AIPlan4EU.
2024
10th Italian Workshop on Artificial Intelligence and Robotics, AIRO 2023
Parallel plans; Plan execution; Robot planning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Scaling up parallel robot plans to improve plan execution time: an industrial use-case / Giordani, E.; Santilli, S.; Iocchi, L.; Patrizi, F.; Zonfrilli, F.. - 3686:(2024), pp. 72-80. ( 10th Italian Workshop on Artificial Intelligence and Robotics, AIRO 2023 Rome; Italy ).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1738701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact