Automated planning is a branch of artificial intelligence aiming at finding a course of action that achieves specified goals, given a description of the initial state of a system and a model of possible actions. There are plenty of planning approaches working under different assumptions and with different features (e.g. classical, temporal, and numeric planning). When automated planning is used in practice, however, the set of required features is often initially unclear. The Unified Planning (UP) library addresses this issue by providing a feature-rich Python API for modeling automated planning problems, which are solved seamlessly by planning engines that specify the set of features they support. Once a problem is modeled, UP can automatically find engines that can solve it, based on the features used in the model. This greatly reduces the commitment to specific planning approaches and bridges the gap between planning technology and its users.

Unified Planning: Modeling, manipulating and solving AI planning problems in Python / Micheli, A.; Bit-Monnot, A.; Roger, G.; Scala, E.; Valentini, A.; Framba, L.; Rovetta, A.; Trapasso, A.; Bonassi, L.; Gerevini, A. E.; Iocchi, L.; Ingrand, F.; Kockemann, U.; Patrizi, F.; Saetti, A.; Serina, I.; Stock, S.. - In: SOFTWAREX. - ISSN 2352-7110. - 29:(2025). [10.1016/j.softx.2024.102012]

Unified Planning: Modeling, manipulating and solving AI planning problems in Python

Trapasso A.;Gerevini A. E.;Iocchi L.;Patrizi F.;Serina I.;
2025

Abstract

Automated planning is a branch of artificial intelligence aiming at finding a course of action that achieves specified goals, given a description of the initial state of a system and a model of possible actions. There are plenty of planning approaches working under different assumptions and with different features (e.g. classical, temporal, and numeric planning). When automated planning is used in practice, however, the set of required features is often initially unclear. The Unified Planning (UP) library addresses this issue by providing a feature-rich Python API for modeling automated planning problems, which are solved seamlessly by planning engines that specify the set of features they support. Once a problem is modeled, UP can automatically find engines that can solve it, based on the features used in the model. This greatly reduces the commitment to specific planning approaches and bridges the gap between planning technology and its users.
2025
Automated planning and scheduling; Interoperability; Python library
01 Pubblicazione su rivista::01a Articolo in rivista
Unified Planning: Modeling, manipulating and solving AI planning problems in Python / Micheli, A.; Bit-Monnot, A.; Roger, G.; Scala, E.; Valentini, A.; Framba, L.; Rovetta, A.; Trapasso, A.; Bonassi, L.; Gerevini, A. E.; Iocchi, L.; Ingrand, F.; Kockemann, U.; Patrizi, F.; Saetti, A.; Serina, I.; Stock, S.. - In: SOFTWAREX. - ISSN 2352-7110. - 29:(2025). [10.1016/j.softx.2024.102012]
File allegati a questo prodotto
File Dimensione Formato  
Micheli_Unified-Planning_2025.pdf

accesso aperto

Note: https://doi.org/10.1016/j.softx.2024.102012
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 854.39 kB
Formato Adobe PDF
854.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1738691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 5
social impact