We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).
A reverse Faber-Krahn inequality for the magnetic Laplacian / Colbois, B.; Lena, C.; Provenzano, L.; Savo, A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 192:(2024). [10.1016/j.matpur.2024.103632]
A reverse Faber-Krahn inequality for the magnetic Laplacian
Colbois B.;Lena C.;Provenzano L.;Savo A.
2024
Abstract
We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).| File | Dimensione | Formato | |
|---|---|---|---|
|
Colbois_reverse_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
571.44 kB
Formato
Adobe PDF
|
571.44 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


