We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).

A reverse Faber-Krahn inequality for the magnetic Laplacian / Colbois, B.; Lena, C.; Provenzano, L.; Savo, A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 192:(2024). [10.1016/j.matpur.2024.103632]

A reverse Faber-Krahn inequality for the magnetic Laplacian

Colbois B.;Lena C.;Provenzano L.;Savo A.
2024

Abstract

We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).
2024
Constant field; Isoperimetric inequalities; Magnetic Laplacian; Method of level lines; Neumann eigenvalues; Reverse Faber-Krahn inequality
01 Pubblicazione su rivista::01a Articolo in rivista
A reverse Faber-Krahn inequality for the magnetic Laplacian / Colbois, B.; Lena, C.; Provenzano, L.; Savo, A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 192:(2024). [10.1016/j.matpur.2024.103632]
File allegati a questo prodotto
File Dimensione Formato  
Colbois_reverse_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 571.44 kB
Formato Adobe PDF
571.44 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1738567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact