Mesoporous carbon-based (mC) hole-transporting layer-free architectures offer a cost-effective solution for the commercialization of perovskite solar cells (PSCs). Adding 5-aminovaleric acid (AVA) to MAPbI3 reduces defect concentration and enhances pore filling, while Eu enrichment in CsPbI3 reduces cation migration and enables device reusability. In this study, AVA-MAPbI3 mC-PSCs were encapsulated at room temperature (RT) with a solvent- and water-free polyurethane (PU) resin. Under continuous ambient light, RT, and 40% relative humidity (RH), the PU encapsulant acts as a barrier to extend device durability and enable reusability. The formation of a bump in the J−V curve after ∼250 h, already reported at a low scan rate but here observed at 50 mV/s, strongly reduces the photovoltaic performances. We demonstrate that the bump is not linked to the formation of PbI2 but is explained by a water-vacancy interaction that increases cation mobility and enhances screening effects near the electron-transport layer. The photovoltaic performances are fully restored by drying the devices under N2 flow for ∼48 h. A further addition of a hydrophobic Kapton tape interlayer between the PU and device mitigates bump formation, boosts t90 to ∼6000 h, and projects t80 to ∼10,800 h. Differently from the Kapton tape used alone, PU provides effective sealing all around the devices, ensuring stability in 100% RH at 90 °C and even underwater. For indoor applications, Eu:CsPbI3 mC-PSCs typically degrade from the γ- to δ-phase within ∼1 h in air, whereas PU-encapsulated devices achieve t80 ∼250 h, extendable to 1250 h with an additional closure glass slide.

Polyurethane-Encapsulated Mesoporous Carbon-Based Perovskite Solar Cells Resilient to Extreme Humidity and Mitigation of the Related Reversible J–V Bump / Valastro, Salvatore; Calogero, Gaetano; Smecca, Emanuele; Arena, Valentina; Mannino, Giovanni; Bongiorno, Corrado; Deretzis, Ioannis; Fisicaro, Giuseppe; La Magna, Antonino; Galliano, Simone; Viada, Gabriele; Bonomo, Matteo; Barolo, Claudia; Alberti, Alessandra. - In: ACS APPLIED ENERGY MATERIALS. - ISSN 2574-0962. - 7:24(2024), pp. 12069-12083. [10.1021/acsaem.4c02572]

Polyurethane-Encapsulated Mesoporous Carbon-Based Perovskite Solar Cells Resilient to Extreme Humidity and Mitigation of the Related Reversible J–V Bump

Bonomo, Matteo;
2024

Abstract

Mesoporous carbon-based (mC) hole-transporting layer-free architectures offer a cost-effective solution for the commercialization of perovskite solar cells (PSCs). Adding 5-aminovaleric acid (AVA) to MAPbI3 reduces defect concentration and enhances pore filling, while Eu enrichment in CsPbI3 reduces cation migration and enables device reusability. In this study, AVA-MAPbI3 mC-PSCs were encapsulated at room temperature (RT) with a solvent- and water-free polyurethane (PU) resin. Under continuous ambient light, RT, and 40% relative humidity (RH), the PU encapsulant acts as a barrier to extend device durability and enable reusability. The formation of a bump in the J−V curve after ∼250 h, already reported at a low scan rate but here observed at 50 mV/s, strongly reduces the photovoltaic performances. We demonstrate that the bump is not linked to the formation of PbI2 but is explained by a water-vacancy interaction that increases cation mobility and enhances screening effects near the electron-transport layer. The photovoltaic performances are fully restored by drying the devices under N2 flow for ∼48 h. A further addition of a hydrophobic Kapton tape interlayer between the PU and device mitigates bump formation, boosts t90 to ∼6000 h, and projects t80 to ∼10,800 h. Differently from the Kapton tape used alone, PU provides effective sealing all around the devices, ensuring stability in 100% RH at 90 °C and even underwater. For indoor applications, Eu:CsPbI3 mC-PSCs typically degrade from the γ- to δ-phase within ∼1 h in air, whereas PU-encapsulated devices achieve t80 ∼250 h, extendable to 1250 h with an additional closure glass slide.
2024
durability; encapsulation; HTL-free PSC; J−V bump; low-cost; polyurethane; water-resistant coverage
01 Pubblicazione su rivista::01a Articolo in rivista
Polyurethane-Encapsulated Mesoporous Carbon-Based Perovskite Solar Cells Resilient to Extreme Humidity and Mitigation of the Related Reversible J–V Bump / Valastro, Salvatore; Calogero, Gaetano; Smecca, Emanuele; Arena, Valentina; Mannino, Giovanni; Bongiorno, Corrado; Deretzis, Ioannis; Fisicaro, Giuseppe; La Magna, Antonino; Galliano, Simone; Viada, Gabriele; Bonomo, Matteo; Barolo, Claudia; Alberti, Alessandra. - In: ACS APPLIED ENERGY MATERIALS. - ISSN 2574-0962. - 7:24(2024), pp. 12069-12083. [10.1021/acsaem.4c02572]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1737398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact