Robot collision detection is addressed with an energy monitoring residual signal that uses only joint position measurements. The residual is evaluated by estimating joint velocity with a reduced-order observer. The observer uses in turn the momentum-based residual as additional input, acting as a virtual sensor of the external torque. We show the effectiveness of this method by comparing it in simulation with numerical differentiation of encoder measurements under nominal and uncertain conditions.

Energy-based Residual for Collision Detection Using a Velocity Observer / Gravina, Giovanbattista; Nunziante, Luca; DE LUCA, Alessandro. - (2024), pp. 38-39. (Intervento presentato al convegno 6th Italian Conference on Robotics and Intelligent Machines tenutosi a Rome, Italy) [10.5281/zenodo.14730983].

Energy-based Residual for Collision Detection Using a Velocity Observer

Alessandro De Luca
2024

Abstract

Robot collision detection is addressed with an energy monitoring residual signal that uses only joint position measurements. The residual is evaluated by estimating joint velocity with a reduced-order observer. The observer uses in turn the momentum-based residual as additional input, acting as a virtual sensor of the external torque. We show the effectiveness of this method by comparing it in simulation with numerical differentiation of encoder measurements under nominal and uncertain conditions.
2024
6th Italian Conference on Robotics and Intelligent Machines
collision detection; state estimation; physical human-robot interaction
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Energy-based Residual for Collision Detection Using a Velocity Observer / Gravina, Giovanbattista; Nunziante, Luca; DE LUCA, Alessandro. - (2024), pp. 38-39. (Intervento presentato al convegno 6th Italian Conference on Robotics and Intelligent Machines tenutosi a Rome, Italy) [10.5281/zenodo.14730983].
File allegati a questo prodotto
File Dimensione Formato  
Gravina_Energy-based_2024.pdf

accesso aperto

Note: DOI: 10.5281/zenodo.14730983
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 608.58 kB
Formato Adobe PDF
608.58 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1737186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact