This study was aimed at introducing a new method for predicting the original metrics of fragmented standardized artifacts, specifically of flint blades from the Middle Pre-Pottery Neolithic B (10,200/100–9,500/400 cal B.P.) in the Southern Levant. The excessive re-use of these artifacts or poor preservation conditions often prevent a complete set of metric data from being obtained. Our suggested approach is based on readily accessible machine learning (artificial intelligence) and neural network analysis. These are performed in a multi-paradigm programming language and numeric computing environment, with parameters represented by a rapid measurement system based on the technological features shared by all lithic artifacts of the studied assemblages. This method can be applied to various chronologies and/or contexts. A full set of metric data, including potential typological and functional elements of the assemblages studied, may provide a better understanding of the lithic technology involved; highlight cultural aspects related to the chaîne opératoire of the studied lithic production; and address issues related to cultural sub-divisions in larger-scale applications. Herein, neural network analysis was performed on blade samples from Middle Pre-Pottery Neolithic B sites from the Southern Levant specifically Nahal Yarmuth 38, Motza, Yiftahel, and Nahal Reuel.
Neural network analysis for predicting metrics of fragmented laminar artifacts: a case study from MPPNB sites in the Southern Levant / Nobile, E.; Troiano, M.; Mangini, F.; Mastrogiuseppe, M.; Vardi, J.; Frezza, F.; Conati Barbaro, C.; Gopher, A.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - (2024).
Neural network analysis for predicting metrics of fragmented laminar artifacts: a case study from MPPNB sites in the Southern Levant
E. Nobile;M. Troiano;F. Mangini;M. Mastrogiuseppe;F. Frezza;C. Conati Barbaro;
2024
Abstract
This study was aimed at introducing a new method for predicting the original metrics of fragmented standardized artifacts, specifically of flint blades from the Middle Pre-Pottery Neolithic B (10,200/100–9,500/400 cal B.P.) in the Southern Levant. The excessive re-use of these artifacts or poor preservation conditions often prevent a complete set of metric data from being obtained. Our suggested approach is based on readily accessible machine learning (artificial intelligence) and neural network analysis. These are performed in a multi-paradigm programming language and numeric computing environment, with parameters represented by a rapid measurement system based on the technological features shared by all lithic artifacts of the studied assemblages. This method can be applied to various chronologies and/or contexts. A full set of metric data, including potential typological and functional elements of the assemblages studied, may provide a better understanding of the lithic technology involved; highlight cultural aspects related to the chaîne opératoire of the studied lithic production; and address issues related to cultural sub-divisions in larger-scale applications. Herein, neural network analysis was performed on blade samples from Middle Pre-Pottery Neolithic B sites from the Southern Levant specifically Nahal Yarmuth 38, Motza, Yiftahel, and Nahal Reuel.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.