Multi-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms. However, existing datasets for multi-object tracking in traffic videos often feature limited instances or focus on single classes, which cannot well simulate the challenges encountered in complex traffic scenarios. To address this gap, we introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios. To validate the complexity and challenges presented by TrafficMOT, we conducted comprehensive empirical studies using three different settings: fully-supervised, semi-supervised, and a recent powerful zero-shot foundation model Tracking Anything Model (TAM). The experimental results highlight the inherent complexity of this dataset, emphasising its value to drive advancements in the field of traffic monitoring and multi-object tracking. Code and data are available at the project page: https://lihaoliu-cambridge.github.io/trafficmot/.

TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios / Liu, L.; Cheng, Y.; Deng, Z.; Wang, S.; Chen, D.; Hu, X.; Lio, P.; Schonlieb, C. -B.; Aviles-Rivero, A.. - (2024), pp. 1265-1273. (Intervento presentato al convegno 32nd ACM International Conference on Multimedia, MM 2024 tenutosi a Melbourne; aus) [10.1145/3664647.3681153].

TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios

Lio P.
;
2024

Abstract

Multi-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms. However, existing datasets for multi-object tracking in traffic videos often feature limited instances or focus on single classes, which cannot well simulate the challenges encountered in complex traffic scenarios. To address this gap, we introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios. To validate the complexity and challenges presented by TrafficMOT, we conducted comprehensive empirical studies using three different settings: fully-supervised, semi-supervised, and a recent powerful zero-shot foundation model Tracking Anything Model (TAM). The experimental results highlight the inherent complexity of this dataset, emphasising its value to drive advancements in the field of traffic monitoring and multi-object tracking. Code and data are available at the project page: https://lihaoliu-cambridge.github.io/trafficmot/.
2024
32nd ACM International Conference on Multimedia, MM 2024
foundation model; multi-object tracking; traffic video dataset
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios / Liu, L.; Cheng, Y.; Deng, Z.; Wang, S.; Chen, D.; Hu, X.; Lio, P.; Schonlieb, C. -B.; Aviles-Rivero, A.. - (2024), pp. 1265-1273. (Intervento presentato al convegno 32nd ACM International Conference on Multimedia, MM 2024 tenutosi a Melbourne; aus) [10.1145/3664647.3681153].
File allegati a questo prodotto
File Dimensione Formato  
Liu_TrafficMOT_2024.pdf

accesso aperto

Note: https://dl.acm.org/doi/10.1145/3664647.3681153
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 10.18 MB
Formato Adobe PDF
10.18 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1728975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact