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Abstract
Multi-object tracking in traffic videos is a crucial research area, of-
fering immense potential for enhancing traffic monitoring accuracy
and promoting road safety measures through the utilisation of ad-
vanced machine learning algorithms. However, existing datasets for
multi-object tracking in traffic videos often feature limited instances
or focus on single classes, which cannot well simulate the challenges
encountered in complex traffic scenarios. To address this gap, we
introduce TrafficMOT, an extensive dataset designed to encom-
pass diverse traffic situations with complex scenarios. To validate
the complexity and challenges presented by TrafficMOT, we con-
ducted comprehensive empirical studies using three different set-
tings: fully-supervised, semi-supervised, and a recent powerful zero-
shot foundation model Tracking Anything Model (TAM). The ex-
perimental results highlight the inherent complexity of this dataset,
emphasising its value to drive advancements in the field of traffic
monitoring and multi-object tracking. Code and data are available
at the project page: https://lihaoliu-cambridge.github.io/trafficmot
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1 Introduction
Multi-object tracking (MOT) aims to detect the trajectories of multi-
ple targets simultaneously along video sequences. It is a fundamen-
tal but indispensable task in diverse realistic application scenarios
and has recently achieved significant advances in visual surveillance
[19, 33], autonomous driving [4, 18, 25], AI city [21, 22, 30], and
sports analysis [6, 11, 20, 29, 37]. Among these diverse applications,
multi-object tracking for traffic stands out, as it could unlock the
potential for Intelligent Traffic Systems (ITS), which could enhance
transportation efficiency and road safety [22].

Large-scale benchmarks are crucial formost artificial intelligence-
related applications. Such benchmarks provide shared datasets for
model training and fair competition in evaluation, e.g., the accident
analysis dataset [27] and vehicle re-identification dataset [17], thus
prompting the ITS development. Importantly, the development of
effective multi-object tracking algorithms heavily also relies on the
availability of high-quality datasets [9, 27, 30]. Despite the avail-
ability of multiple traffic MOT datasets, there are still significant
limitations that hinder the progress in traffic analysis. For example,
many existing datasets lack the complexity and diversity that is
crucial for accurately reflecting real-world traffic scenarios, such
as occlusions, varying lighting conditions, diverse traffic patterns,
and importantly dense scenes. Consequently, the need for a new
dataset arises, one that investigates the challenges encountered in
complex traffic environments.

Current Datasets in Traffic Analysis and Their Limitations.
Two widely used datasets in the field of traffic analysis are the
VERI-Wild dataset [17] by Lou et al. and the MOTS dataset [31]
by Voigtlaender et al. The VERI-Wild dataset focuses on vehicle
re-identification in urban scenes and consists of data from 174
cameras.While it provides a comprehensive view of vehicle tracking
scenarios, it is not specifically designed for multi-object tracking
in intricate traffic scenarios. Similarly, the MOTS dataset extends
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Figure 1: Comparison of TrafficMOT with other traffic multi-object tracking datasets, and performance evaluations of the
recent powerful zero-shot foundation model (Tracking Anything Model). The first row illustrates the enhanced complexity of
our TrafficMOT, with more classes and instances. The second row presents the visual results in different settings of Tracking
Anything Model. The visuals indicate that even the advanced model struggles to manage the complexities of our dataset.

multi-object tracking by incorporating object segmentation, but it
also lacks a specific focus on complex traffic scenarios. Moreover,
both datasets are not specifically designed for multi-object tracking
in the context of intricate traffic scenarios.

Figure 1 and Table 1 provide the comparisons between our
TrafficMOT and other datasets in the field of traffic multi-object
tracking. Note that the Urban Tracker [9] is introduced in 2014,
focusing on multiple object tracking in urban mixed traffic. How-
ever, this dataset consists of only five collected video sequences,
limiting its diversity and scalability. Later, Shah et al. [27] present
a CADP dataset for traffic accident analysis using CCTV traffic
cameras. While the dataset contain 1,416 video segments with full
spatio-temporal annotations, it is specifically tailored to accident
analysis and does not cover the broader challenges of multi-object
tracking in traffic. Recently, CityFlow [30] is introduced for ve-
hicle tracking and identification, providing a valuable dataset for
research in the field. However, the number of classes is limited
and it is unable to handle dense traffic scenarios. Most recently,
improved versions of CityFlow are released in [21], where a series
of AI city challenges are held for multi-camera people tracking,
tracked vehicle retrieval by natural language, and traffic safety [22].
While the above datasets are specifically tailored for MOT in traffic
scenes, significant limitations still persist, including limited class
numbers and traffic density.

Contributions. In this paper, we present TrafficMOT, a novel
benchmark dataset that introduces new challenges in the field
of multi-object tracking in traffic analysis. Acquired from fixed
CCTV cameras across a wide range of cities, TrafficMOT stands
out among existing datasets due to its unique and challenging
characteristics. Notably, our dataset offers an extensive number of
object classes, surpassing any other existing dataset. Additionally,
TrafficMOT provides dense scenes, mainly capturing the intricate
dynamics and congestion found in traffic scenarios. To highlight
the complexity and challenges inherent in TrafficMOT, we also
conduct an empirical study with three representative settings: fully

Table 1: Comparison of characteristics between existing traf-
fic multi-object tracking datasets and TrafficMOT.

Dataset Year #Video #Mins #Class #Object

UrbanTracker 2014 5 18.59 3 5.4
CADP 2018 1,416 86.37 6 3.6

CityFlow 2022 40 195 1 8.2
⋆ TrafficMOT 2023 2,102 105.1 10 22.8

supervised, semi-supervised, and a recent powerful zero-shot foun-
dation model [10] named as Tracking Anything Model (TAM) [35].
Our experimental results underscore the inherent complexity of
this dataset, demonstrating its potential to drive advancements
in the field of traffic monitoring and multi-object tracking. Our
contributions are summarised as follows:

● We introduce TrafficMOT, a novel benchmark dataset specif-
ically designed for multi-object tracking in complex traf-
fic scenarios. This dataset offers a larger number of object
classes and encompasses intricate traffic situations, including
densely populated scenarios.
● We conduct empirical studies with three representative set-
tings: fully-supervised, semi-supervised, and a recent pow-
erful zero-shot foundation model called Tracking Anything
Model (TAM). Experiment results highlight the intrinsic chal-
lenges posed by this dataset, thus emphasising its potential
to spur advancements in traffic monitoring and road safety.

2 TrafficMOT: Unlocking Multi-Object Tracking
in Complex Traffic

In this section, we delve into a comprehensive exploration of our
dataset, providing detailed insights into its characteristics and sta-
tistical properties. We first introduce the data collection, annotation,
and partitioning process. Then, we conduct statistical analyses to
reveal the complexity of dataset.
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Figure 2: Visualisation of annotated instances on different classes in TrafficMOT.

2.1 TrafficMOT Dataset Construction
Video Collection. We collected videos from eight cities spanning
different regions in India, including northern, southern, eastern,
western, and central parts of the country. The video acquisition
process involved the use of fixed CCTV cameras installed on roads
and highways. These cameras provided a comprehensive view of
the traffic scenarios in different urban and suburban settings.

Our dataset consists of a total of 2,102 videos, where each video
comprises 30 frames, allowing for a significant amount of temporal
information to be extracted. To capture the heterogeneity of real-
world surveillance systems, the videoswere recorded using different
cameras, resulting in varying frame resolutions, including 352 ×
288, 1056 × 864, 1280 × 720, and 1920 × 1080. This diversity in frame
resolutions reflects the practical challenges encountered in real-
world traffic surveillance scenarios.

Instance Annotation. The annotation process for our proposed
TrafficMOT dataset involved providing instance bounding box
(bbox) labels and categorising each instance into one of the ten
classes illustrated in Figure 2 for each annotated frame. Out of the
total 2,102 videos in the dataset, 78 videos were fully annotated,
meaning that all 30 frames in each of these videos were annotated.
In these fully annotated videos, TrafficMOT provides tracking ids
for each instance, enabling the tracking of objects across frames
within the video. For the remaining 2,024 videos, annotations were
only provided for the first frame. This resulted in a total of 8,689
unannotated frames across the dataset. The presence of this large
number of unlabelled frames presents an opportunity to explore
and advance semi-supervised learning techniques that leverage a
limited number of annotations.

To ensure the quality of the annotations, a professional company
was engaged to carry out the annotation process. Following the
completion of the annotations, a dedicated quality control group
meticulously reviewed all the annotations. Any annotations identi-
fied as low quality were sent back to the company for refinement.
This iterative process of annotation refinement was conducted
multiple times to ensure a high level of annotation quality in the
TrafficMOT dataset.

Official Partition. To facilitate the training and validation of
multiple object tracking task on TrafficMOT dataset, the dataset
was divided into training and test sets at the video level. Out of the
78 fully annotated videos, 51 videos were selected as the testing set.

1-10
11-20
21-30
31-40
>=40

Figure 3: Comparison of instance numbers per frame.

These videos contain instance-level annotations (bounding box +
category) for every frame and provide instance tracking IDs that
persist throughout the video.

During the fully-supervised training process, we employed the
remaining 27 fully annotated videos in conjunction with the 2,024
videos that only had annotations on the first frame. In contrast, the
semi-supervised setting incorporated an additional 8,689 unlabelled
frames as part of the training set. This inclusion of unlabelled data
presents a chance to explore semi-supervised learning techniques
that leverage both labelled and unlabelled data for improved per-
formance. Partitioning the dataset into separate train and test sets
ensures a rigorous evaluation of multi-object tracking performance
and enables fair comparisons for different methods.

2.2 TrafficMOT Statistics & Key Features
Diverse Classes. Figure 2 presents annotation examples for each
class, illustrating that certain classes exhibit a notable resemblance.
For instance, distinguishing between the e-rickshaw and auto, as
well as between the bike and motorbike, requires careful exami-
nation. Accurately identifying these classes is vital to ensure road
safety, particularly considering the potential risks associated with
the interaction between motor vehicles and non-motor vehicles.
This underscores the importance of exploring complex traffic sce-
narios that involve interclass correlations.

In Figure 4, we present the correlation matrix depicting the
presence of different classes within the same video. We divide the
ten classes into two groups: motor and non-motor vehicles. The
motor vehicle classes exhibit a strong correlation with each other
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Figure 4: Correlation matrix of classes built on the appearance of class tracks within the same video.

indicating that different types of motor vehicles commonly co-
occur in our dense and complex TrafficMOT dataset. Moreover,
the correlation between motor and non-motor vehicles is shown
in the pink part in Figure 4. It is evident that pedestrian and e-
rickshaws classes (0.37 and 0.47) frequently appear alongside heavy
vehicles such as tractors, raising safety concerns for citizens. Hence,
our TrafficMOT dataset is beneficial for analysing dense traffic
conditions and vehicle behaviour to mitigate the risks of accidents.

Crowded Scenes inMulti-Object Tracking.Our dataset stands
out from existing datasets in terms of traffic density, offering a
unique opportunity to explore and tackle the challenges of multi-
object tracking in dense traffic flow scenarios.While existing datasets
are often limited in terms of the number of objects (as indicated in
Table 1, and detailed in Figure 3 ), our dataset presents a significant
advancement by providing a rich and challenging environment
with densely populated traffic scenes.

A key characteristic of our dataset is the high average number of
objects per frame. On average, our dataset contains 22.8 objects per
frame, surpassing the ranges found in other datasets which average
from 5.4 to 8.2 objects per frame, as shown in Table 1. This notable
difference in object density creates complex tracking scenarios,
requiring advanced algorithms and techniques to accurately track
and analyse multiple objects amidst congested traffic conditions.

Why is Traffic Density Relevant? The heightened object density
in our dataset imposes greater demands on tracking algorithms,
requiring them to exhibit enhanced robustness, accuracy, and ef-
ficiency in handling a larger number of objects simultaneously.
Furthermore, the dense scene characteristic exposes tracking al-
gorithms to challenges such as occlusions, partial object visibility,
and overlapping trajectories, all of which are prevalent in crowded
traffic scenarios. This realistic representation of traffic conditions
provides a more meaningful and representative benchmark for
evaluating the performance of multi-object tracking algorithms in
practical traffic analysis applications.

Weather Conditions in TrafficMOT. Our dataset comprises
traffic videos captured under diverse weather conditions, which

Daytime

Nighttime & FoggyNighttime

Daytime & Foggy

Figure 5: Visualisation of different weather scenes.

provides a realistic representation of real-world scenarios. It encom-
passes 4 diffrent weather condition: sunny (daytime) weather (1,761
videos), foggy conditions (218 videos), and low-light conditions
during nighttime (123 videos). This deliberate inclusion of various
weather conditions enhances the training difficulty and exposes
the model to a wider range of scenarios that it may encounter in
the real world.

The presence of videos captured under sunny weather condi-
tions reflects typical daytime scenarios, enabling the model to learn
patterns and behaviours under optimal lighting conditions. This
serves as a baseline for evaluating the model’s performance in ideal
weather conditions. Incorporating videos captured in foggy condi-
tions introduces challenges associated with reduced visibility, as
shown in Figure 5. The model learns to detect and track objects
amidst the obscuring effects of fog, enhancing its ability to han-
dle adverse weather conditions. The inclusion of videos recorded
in low-light conditions during nighttime presents additional chal-
lenges, such as limited illumination and potential occlusions. This
exposure allows the model to adapt and improve its performance
in scenarios where lighting conditions are less favourable. By ex-
posing the model to a diverse range of environmental conditions,
our dataset increases the training difficulty and enables the model
to learn robust representations that generalise well across different
scenarios. This prepares the model to handle real-world challenges,

1268



TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

contributing to the development of more reliable and versatile
multi-object tracking systems.

3 Benchmarking TrafficMOT on Multiple Object
Tracking

We conduct a comprehensive benchmark on multi-object tracking
(MOT) by evaluating three types of methods: fully-supervised MOT
methods (Section 3.1), semi-supervised MOT methods (Section 3.2),
and a recent powerful zero-shot foundation model, the Tracking
Anything Model (Section 3.3). This extensive evaluation allowed
us to assess the performance of various MOT approaches on our
TrafficMOT dataset and gain valuable insights into their respective
strengths. It is worth noting that, to the best of our knowledge, our
work is the first to apply large-scale foundation models to multi-object
tracking tasks in complex traffic scenarios.

3.1 Fully-Supervised MOT Methods
Fully-supervised deep learning techniques have proven to be pow-
erful in recent years [14, 36]. We first train fully-supervised MOT
models using existing baseline MOT methods. Most baselines in-
tegrate an object detector followed by a tracker, so the training
process is formulated as

ℒ = ℒ𝑑𝑒𝑡 +ℒ𝑡𝑟𝑎, (1)

where ℒ𝑑𝑒𝑡 represents the object detection and classification loss,
typically employed by methods like Faster R-CNN [26]. ℒ𝑡𝑟𝑎 de-
notes object association or tracking loss, such as the loss used
for learning instance similarity [23]. In our study, we specifically
focus on four fully-supervisedMOTmethods: DeepSORT [32], Byte-
Track [38], QDTrack [23], and OC-SORT [2].

DeepSORT includes appearance information to SORT [1] to bet-
ter track occluded objects. SORT, which uses the overlap of bound-
ing boxes as a metric for object association, cannot effectively track
through occlusions due to the simple association metric. DeepSORT
thus integrates the appearance and motion information into the
association metric to further improve SORT.

ByteTrackmakes full use of both the high- and low-score detec-
tion boxes for object association while most other MOT methods
only utilise the high-score ones. It first associates the high-score
detection boxes to certain tracklets based on their IoU similarity. Af-
ter that, it matches the low-score detection boxes to the remaining
unmatched tracklets.

QDTrack (Quasi-Dense Tracking) adopts a two-step approach
to enhance feature embedding and object association. Firstly, it
employs quasi-dense contrastive learning, which involves densely
matching extensive regions of interest in one image with corre-
sponding regions in another. This process aims to learn a more
robust feature embedding. Secondly, QDTrack uses bi-directional
softmax to associate objects, ensuring bi-directional consistency.
This means that the feature embeddings of two associated objects
should be the nearest neighbors of each other.

OC-SORT (Observation-Centric SORT) addresses noise accu-
mulation in SORT [1], which employs the Kalman filter (KF) and
an object association matrix. OC-SORT proposes two strategies:
Observation-centric Re-Update (ORU) and Observation-Centric Mo-
mentum (OCM). ORU rechecks untracked tracks associated with

object tracklets and updates KF parameters accordingly. OCM in-
troduces a cost matrix for object association, enforcing consistent
motion direction among objects.

3.2 Semi-Supervised MOT Training
In semi-supervised training setting, we incorporate the common
pseudo-labelling mechanism for object detection to implement
multi-object tracking. We apply three semi-supervised strategies
across all four MOT baseline methods, namely STAC [28], Soft-
Teacher [34], and MotionPrior [15].

STAC operates in two stages. In the first stage, an MOT model is
trained using labelled training data. In the second stage, the trained
MOTmodel is utilized to generate pseudo-labels for unlabelled data.
Subsequently, the MOT model is re-trained using both the labelled
and pseudo-labelled data, improving its performance through the
inclusion of additional unlabelled samples.

SoftTeacher shares a similar setting with STAC but introduces
a single-stage strategy to perform the two-stage pseudo-labelling
mechanism in an end-to-end manner.

MotionPrior extends STAC by incorporating simple motion
prior present in traffic datasets. Therefore, it can filter out noisy
pseudo labels, thereby enhancing the quality of the training dataset.

Tracking Branches in Semi-Supervised Training. The three
aforementioned pseudo-labelling strategies are primarily designed
for object detection, which may result in inaccurate pseudo-labels
for tracking IDs. Consequently, in the context of semi-supervised
MOT, it is necessary to ensure the consistency of pseudo-labels
across the time series before utilizing them for training purposes.

To this end, given a predicted object at a certain position specified
by bounding box 𝑏𝑖 , we will find the nearest object to 𝑏𝑖 in the next
frame, which is denoted as 𝑏𝑖+1. Then, we check the consistency 𝐶
of these two objects via

𝐶 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
1, if IoU(𝑏𝑖 , 𝑏𝑖+1) > 𝜏𝑐 and (𝑦𝑖 == 𝑦𝑖+1)
0, otherwise

(2)

where IoU(⋅, ⋅) is the function computing the intersection over the
union score of two inputs, and 𝜏𝑐 is a threshold. If the predicted
bounding boxes of these two objects are close to each other and
their object identities are the same, then 𝐶 = 1. In this case, we
regard them as the same tracking object and keep their predictions
as pseudo-labels. In this way, we can obtain the pseudo-labels for
all the unlabelled videos, for both detection and tracking results.
Subsequently, we incorporate these pseudo-labelled videos along-
side the labelled ones to train another MOT model, employing the
same loss functions as defined in Equation (1).

3.3 Zero-Shot Foundation Model for MOT
Additionally, we conduct empirical studies using the Tracking Any-
thing Model (TAM) [35], a recent and powerful zero-shot founda-
tion model [10]. TAM demonstrates potential applicability in the
context of semi-supervised MOT, further enhancing the versatility
of our research.

Track Anything Model, also named Segment and Track Any-
thing (SAM-Track), is a powerful zero-shot foundation model for
general MOT tasks such as unsupervised MOT, semi-supervised
MOT, and interactive MOT. It adopts the latest Segment Anything
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Table 2: Numerical comparison on supervised settings. Best results are marked in bold.

Techniqes Evaluation Metrics
Method Year mAP mAP50 IDF1 MOTA

DeepSORT 2017 0.436 0.621 0.498 0.213
ByteTrack 2021 0.463 0.651 0.637 0.326
QDTrack 2021 0.440 0.633 0.592 0.414
OC-SORT 2022 0.460 0.646 0.562 0.118
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Figure 6: Visual comparison of different methods in fully-supervised Settings. For visualisation purposes, an object is displayed
along with the identified error over time. The pink bounding box signifies a tracking error, indicated by a tracking ID that
differs from the one assigned to the white bounding box.

Model (SAM) [10] to generate a segmentation mask for the first
frame of videos with the help of user interactive clicks. Then it
exploits XMem [3], a semi-supervised MOT method requiring a
precise mask to initialise, to output a predicted mask. If the mask is
of poor quality, SAM is further used to refine the mask. Otherwise,
the mask is accepted as the final predicted tracking mask.

We consider four different ways to apply TAM for zero-shot
multi-object tracking, as shown in Figure 7. (a) We directly adopt
TAM to track everything on TrafficMOT using default settings. (b)
We make full use of the first-frame annotations in our dataset to
guide the learning process of TAM to track traffic-related objects.
(c) We input the class names in our dataset as the text prompts
to guide the TAM to learn to track the objects of these classes. (d)
We use both text prompts and first-frame annotations to better

adapt TAM to our dataset. Through these empirical studies, we
illustrate that even a large-scale MOT model such as TAM struggles
to effectively handle the MOT task as defined in our dataset. These
comprehensive studies serve as a testament to the challenges posed
by complex traffic scenarios within our dataset.

4 Experimental Results
4.1 Implementation Details, Preprocessing, &

Evaluation Metrics
Implementation Details. We implemented the MOT architec-
ture based on MMTracking [5] framework using the PyTorch [24]
library. For fair comparison with all the fully-supervisedMOTmeth-
ods [2, 23, 32, 38], we implemented the object detection module
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Figure 7: Visual comparison using different information on TAM: (a) Everything, (b) Mask, (c) Text, (d) Mask & Text. For better
comparisons of the outputs, the ground truth (GT) is displayed in (e). In the first frame of GT, we emphasise the two contrary
road directions using red arrows.

with the same architecture: Faster R-CNN (Region-based Convo-
lutional Neural Network) [26] incorporating with region proposal
network (RPN) [12] on ResNet-50 [8] backbone with ImageNet [7]
pre-trained weights. The models were trained for 15 epochs with
the AdamW optimiser [16] by step decay initialling with a learning
rate of 2 × 10−4. For the training of semi-supervised frameworks,
we initialised their weights with the corresponding trained fully-
supervised models. Further, we tuned the initial learning rate on
AdamW optimiser to 5× 10−5 and trained an additional five epochs.
The empirical studies on fully-supervised and semi-supervised
methods are all trained on an NVIDIA A100 GPU with 80GB RAM
for approximately six hours and twlve hours respectively. For the
TAM experiments, we set the new object updating parameters as
default in all four track anything settings following [35].

Preprocessing. We followed the data augmentation strategy in
MMTracking to enhance the variety of the dataset. Specifically, we
first resized the images to 1, 088 × 1, 088 while preserving the as-
pect ratio, then performed photometric distortion, random flipping,
normalisation, and padding.

Detection Evaluation. We measure the detection performance
with the mAP (mean Average Precision) and mAP50 metrics. mAP
calculates the precision-recall curve by varying the detection thresh-
old and averages the AP values for all classes, while mAP50 takes
the average precision at an IoU threshold of 0.5 for better evaluating
moderate overlap objects.

Tracking Evaluation.We evaluate the tracking performance
with Multi-Object Tracking Accuracy (MOTA) and Identity F1 score
(IDF1). MOTA can assess the overall tracking accuracy by consid-
ering false positive, false negative, and tracking ID switches. IDF1
measures the accuracy of tracking identity by the F1 score based
on the overlap between predicted and ground truth tracks.

4.2 Benchmark Results
Fully-Supervised Results.We benchmark four fully-supervised
MOTmethods, namelyDeepSORT [32], ByteTrack [38], QDTrack [23],
and OC-SORT [2]; as shown in Table 2 and Figure 6.

DeepSORT demonstrates relatively poor performance, mainly
due to its challenges in handling occlusions, which are common
complexities in traffic scenarios. On the other hand, ByteTrack [38]
achieves the best performance in terms of mAP, mAP50, and IDF1,
with scores of 0.463, 0.651, and 0.637, respectively. In Figure 6, Byte-
Track accurately detects bounding boxes but faces difficulties in
establishing consistent connections across frames for tracking. De-
spite its limitations in detection, QDTrack outperforms ByteTrack
in terms of MOTA by 0.088, indicating its superior ability to process
tracking information. However, OC-SORT, being a newer method,
exhibits below-average performance in terms of MOTA, suggesting
it may not be well-suited for traffic scenarios. Figure 6 demonstrates
instances where OC-SORT loses track. These results are obtained
by re-training the networks with unified training parameters to
ensure fair comparisons across different methods.
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Table 3: Numerical comparison between baselines on semi-supervised Settings. The results display four metrics, with the best
results highlighted in bold. "ST" stands for "SoftTeacher", and "MT" denotes "MotionPrior" [13].

(a) Evaluation results on DeepSORT.

Results on DeepSORT

mAP mAP50 IDF1 MOTA

STAC 0.378 0.565 0.504 0.333
ST 0.367 0.552 0.501 0.324
MP 0.390 0.569 0.511 0.340

(b) Evaluation results on ByteTrack

Results on ByteTrack

mAP mAP50 IDF1 MOTA

STAC 0.440 0.624 0.636 0.452
ST 0.436 0.601 0.601 0.450
MP 0.455 0.627 0.635 0.455

(c) Evaluation results on QDTrack.

Results on QDTrack

mAP mAP50 IDF1 MOTA

STAC 0.393 0.575 0.549 0.388
ST 0.393 0.569 0.530 0.346
MP 0.404 0.590 0.571 0.399

(d) Evaluation results on OC-SORT.

Results OC-SORT

mAP mAP50 IDF1 MOTA

STAC 0.422 0.610 0.603 0.385
ST 0.415 0.600 0.555 0.207
MP 0.444 0.629 0.610 0.397

Semi-Supervised Results. In addition to benchmarking su-
pervised methods, we also evaluate three semi-supervised pseudo-
labelling strategies across all four baseline MOT models, the results
of which are presented in Table 3.

Upon initial analysis, it is observed that MotionPrior generally
outperforms the other two strategies, and STAC marginally sur-
passes SoftTeacher. When compared to the fully-supervised setting,
all semi-supervised strategies yield lower scores in terms of mAP
and mAP50, which indicates reduced detection accuracy. However,
models like DeepSORT, ByteTrack, and OC-SORT exhibit improved
IDF1 and MOTA scores, which indicates improved tracking per-
formance. Yet, even though the semi-supervised setting can help
in improving tracking accuracy, the overall performance remains
relatively low due to the dataset’s complexity. Consequently, the
design and development of further algorithms tailored to manage
such challenging datasets is imperative.

TAM Results. Although TAM has demonstrated superior per-
formance in interactive object tracking and segmentation in some
videos [35], it yields unsatisfactory results on our TrafficMOT dataset,
as depicted in Figure 7. We analyse the experimental results for
five different TAM settings, as explained in Sec. 3.3. In the (a) track
Everything mode, TAM outputs trajectories for all objects, includ-
ing background and irrelevant objects, leading to a loss of focus
on traffic-related objects. The second row in Figure 7 displays the
tracking results when using the first frame annotation to guide the
tracking of subsequent objects. It is evident that this model per-
forms well only on the initial frames, and then transitions towards
the (a) Everything mode for the remaining frames. From the third
row, we observe that using class names as prompts allows TAM to
generate stable tracking outputs for vehicles and pedestrians, but
with numerous missing objects in crowded areas. When integrating
the (d) first frame annotation and class name to guide TAM, the
output outperforms all other settings. However, it may still generate

unusual objects, as depicted by the large green bounding box in
the last column. Moreover, new objects, such as the white car in
the bottom-left corner visible in the third and fourth frames, are
not tracked until the fifth frame. A critical observation across all
four settings is that while objects can be tracked, they are not accu-
rately recognised. All instances are generalised as ‘objects’ without
specific class designations. Despite TAM’s promising pixel-level
annotation, it falls short in providing precise class information.

5 Conclusion
This study addresses the vital area of multi-object tracking in traf-
fic videos, recognising its potential to enhance traffic monitor-
ing and promote road safety through advanced machine learning
algorithms. We acknowledge the limitations of current datasets,
which often oversimplify the task and lack adequate instances
or diverse class representation. To tackle these challenges, we
present TrafficMOT, a comprehensive and diverse dataset specifi-
cally designed to cover a wide range of complex traffic scenarios.
Our research includes three empirical studies: fully-supervised,
semi-supervised, and the recent zero-shot foundation model (TAM).
These studies underscore the inherent complexity and difficulties of
our TrafficMOT dataset. Our experimental findings highlight the
inherent difficulty of our dataset while also showcasing its potential
to drive significant advancements in the fields of traffic monitoring
and multi-object tracking. With its high level of complexity and
diversity, we envision that TrafficMOT will serve as a challenging
yet realistic benchmark for the development and refinement of
future multi-object tracking algorithms.
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