Proposals for the inclusion of Topology topics in the curricula of various school orders are often motivated by the fact that topological concepts develop naturally in students' reasoning from the time they are children. In fact, many scholars such as Piaget, Inhelder, Laurendeau and Pinard believe that topological knowledge precedes geometric knowledge; in the sense that the first representation of space formed in children is not a Euclidean-type representation, characterized by metric concepts, but a topological-type representation, characterized by the concepts of proximity, separation, order and continuity. In many introductions to topology, these formalism-related obstacles are set aside by presenting topology (“rubber sheet geometry”) as an essentially “playful” subject in which “pretzels and clover knots are played with and Mobius ribbons and Klein bottles are constructed.” There is a risk, however, that the student who is at some point in his schooling may be puzzled by these examples wondering “where is the mathematics” and what are the connections between topology and the other mathematics subjects he has covered during his studies. The article takes up what the authors presented at a seminar held during the “Meetings with Mathematics No. 38” conference, in which a proposed introduction to knot theory, a branch of Topology, was presented, with the intention of combining the playful point of view and the use of materials with the mathematical formalism behind it.
Le proposte per l’inserimento di argomenti di Topologia nei curricula dei vari ordini scolastici sono spesso motivate dal fatto che i concetti topologici si sviluppano naturalmente nei ragionamenti degli studenti sin da quando sono bambini. Infatti, molti studiosi come Piaget, Inhelder, Laurendeau and Pinard ritengono che la conoscenza topologica preceda quella geometrica; nel senso che la prima rappresentazione dello spazio che si forma nei bambini non è una rappresentazione di tipo euclideo, caratterizzata da concetti metrici, ma una rappresentazione di tipo topologico, caratterizzata dai concetti di prossimità, separazione, ordine e continuità. In molte introduzioni alla topologia, questi ostacoli legati al formalismo vengono messi da parte presentando la topologia (“geometria del foglio di gomma”) come soggetto essenzialmente “ludico” in cui “si gioca con pretzels e nodi a trifoglio e si costruiscono nastri di Mobius e bottiglie di Klein”. Si rischia però che lo studente che si trova a un certo punto del suo percorso scolastico possa rimanere perplesso di fronte a questi esempi chiedendosi “dove sia la matematica” e quali siano le connessioni fra la topologia e gli altri argomenti di matematica che ha affrontato durante i suoi studi. L'articolo riprende quanto presentato dagli autori in occasione di un seminario tenuto durante il convegno "Incontri con la matematica n. 38", in cui è stata presentata una proposta di introduzione alla teoria dei nodi, una branca della Topologia, con l’intento di coniugare il punto di vista ludico e l’uso di materiali con il formalismo matematico che c’è dietro.
Sciogliamo i nodi… con la matematica! / Mazza, Lorenzo; Passaro, Davide; Veredice, Antonio. - (2024), pp. 235-236. (Intervento presentato al convegno Incontri con la Matematica n. 38 tenutosi a Castel San Pietro Terme (BO)).
Sciogliamo i nodi… con la matematica!
Lorenzo Mazza;Davide Passaro;Antonio Veredice
2024
Abstract
Proposals for the inclusion of Topology topics in the curricula of various school orders are often motivated by the fact that topological concepts develop naturally in students' reasoning from the time they are children. In fact, many scholars such as Piaget, Inhelder, Laurendeau and Pinard believe that topological knowledge precedes geometric knowledge; in the sense that the first representation of space formed in children is not a Euclidean-type representation, characterized by metric concepts, but a topological-type representation, characterized by the concepts of proximity, separation, order and continuity. In many introductions to topology, these formalism-related obstacles are set aside by presenting topology (“rubber sheet geometry”) as an essentially “playful” subject in which “pretzels and clover knots are played with and Mobius ribbons and Klein bottles are constructed.” There is a risk, however, that the student who is at some point in his schooling may be puzzled by these examples wondering “where is the mathematics” and what are the connections between topology and the other mathematics subjects he has covered during his studies. The article takes up what the authors presented at a seminar held during the “Meetings with Mathematics No. 38” conference, in which a proposed introduction to knot theory, a branch of Topology, was presented, with the intention of combining the playful point of view and the use of materials with the mathematical formalism behind it.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.