Single-walled carbon nanotubes (SWCNTs) have unique optoelectronic properties that make them suitable for applications ranging from phototherapy to imaging and sensing, but their uptake has mainly been explored in eukaryotic cells. Here the authors explore the interaction of SWCNTs with cyanobacteria, showing that they are spontaneously taken up by cells only when coated with positive charges, opening the possibility of prokaryotic-based biotechnology applications.The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics / Antonucci, Alessandra; Reggente, Melania; Roullier, Charlotte; Gillen, Alice J.; Schuergers, Nils; Zubkovs, Vitalijs; Lambert, Benjamin P.; Mouhib, Mohammed; Carata, Elisabetta; Dini, Luciana; Boghossian, Ardemis A.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 17:10(2022), pp. 1111-1119. [10.1038/s41565-022-01198-x]

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics

Dini, Luciana;
2022

Abstract

Single-walled carbon nanotubes (SWCNTs) have unique optoelectronic properties that make them suitable for applications ranging from phototherapy to imaging and sensing, but their uptake has mainly been explored in eukaryotic cells. Here the authors explore the interaction of SWCNTs with cyanobacteria, showing that they are spontaneously taken up by cells only when coated with positive charges, opening the possibility of prokaryotic-based biotechnology applications.The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
2022
single-walled carbon nanotubes; photosynthetic activity;cyanobacteria for near-infrared imaging
01 Pubblicazione su rivista::01a Articolo in rivista
Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics / Antonucci, Alessandra; Reggente, Melania; Roullier, Charlotte; Gillen, Alice J.; Schuergers, Nils; Zubkovs, Vitalijs; Lambert, Benjamin P.; Mouhib, Mohammed; Carata, Elisabetta; Dini, Luciana; Boghossian, Ardemis A.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 17:10(2022), pp. 1111-1119. [10.1038/s41565-022-01198-x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
social impact