As human-machine interaction contexts become increasingly prevalent, it becomes crucial to identify and formalize the characteristics and parameters influencing trust. This enables the creation of agents capable of inducing higher trust and recognizing whether a partner is trustworthy or not. In this article, we focus on one of the key components affecting trust: competence, the ability to successfully complete a selected task. We evaluate this concept within a Multi-Agent Reinforcement Learning (MARL) framework and introduce the Competence Trust Factor (CTF). Our results demonstrate that incorporating the CTF significantly improves task performance and agent collaboration in various scenarios.
Modeling a Trust Factor in Composite Tasks for Multi-Agent Reinforcement Learning / Contino, Giuseppe; Cipollone, Roberto; Frattolillo, Francesco; Fanti, Andrea; Brandizzi, Nicolo'; Iocchi, Luca. - (2024), pp. 195-203. (Intervento presentato al convegno HAI '24: International Conference on Human-Agent Interaction tenutosi a Swansea; United Kingdom) [10.1145/3687272.3688325].
Modeling a Trust Factor in Composite Tasks for Multi-Agent Reinforcement Learning
Giuseppe Contino;Roberto Cipollone;Francesco Frattolillo;Andrea Fanti;Nicolo' Brandizzi;Luca Iocchi
2024
Abstract
As human-machine interaction contexts become increasingly prevalent, it becomes crucial to identify and formalize the characteristics and parameters influencing trust. This enables the creation of agents capable of inducing higher trust and recognizing whether a partner is trustworthy or not. In this article, we focus on one of the key components affecting trust: competence, the ability to successfully complete a selected task. We evaluate this concept within a Multi-Agent Reinforcement Learning (MARL) framework and introduce the Competence Trust Factor (CTF). Our results demonstrate that incorporating the CTF significantly improves task performance and agent collaboration in various scenarios.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.